vikasaeta's picture
Update README.md
0eafe1f
metadata
pipeline_tag: token-classification
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - few_nerd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: few_nerd
          type: few_nerd
          args: supervised
        metrics:
          - name: Precision
            type: precision
            value: 0.6424480067658478
          - name: Recall
            type: recall
            value: 0.6854236732015421
          - name: F1
            type: f1
            value: 0.6632404008334158
          - name: Accuracy
            type: accuracy
            value: 0.9075199647113962

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the few_nerd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3136
  • Precision: 0.6424
  • Recall: 0.6854
  • F1: 0.6632
  • Accuracy: 0.9075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.328 1.0 8236 0.3197 0.6274 0.6720 0.6489 0.9041
0.2776 2.0 16472 0.3111 0.6433 0.6759 0.6592 0.9069
0.241 3.0 24708 0.3136 0.6424 0.6854 0.6632 0.9075

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1