|
--- |
|
pipeline_tag: token-classification |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- few_nerd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: few_nerd |
|
type: few_nerd |
|
args: supervised |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6424480067658478 |
|
- name: Recall |
|
type: recall |
|
value: 0.6854236732015421 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6632404008334158 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9075199647113962 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-ner |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3136 |
|
- Precision: 0.6424 |
|
- Recall: 0.6854 |
|
- F1: 0.6632 |
|
- Accuracy: 0.9075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.328 | 1.0 | 8236 | 0.3197 | 0.6274 | 0.6720 | 0.6489 | 0.9041 | |
|
| 0.2776 | 2.0 | 16472 | 0.3111 | 0.6433 | 0.6759 | 0.6592 | 0.9069 | |
|
| 0.241 | 3.0 | 24708 | 0.3136 | 0.6424 | 0.6854 | 0.6632 | 0.9075 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|