yasmineee's picture
finetune-t5-base-on-opus100-Ar2En-without-optimization
0bb8bd2 verified
|
raw
history blame
3.01 kB
metadata
base_model: UBC-NLP/AraT5v2-base-1024
tags:
  - generated_from_trainer
datasets:
  - opus100
metrics:
  - bleu
model-index:
  - name: finetune-t5-base-on-opus100-Ar2En-without-optimization
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: opus100
          type: opus100
          config: ar-en
          split: train[:7000]
          args: ar-en
        metrics:
          - name: Bleu
            type: bleu
            value: 10.4288

finetune-t5-base-on-opus100-Ar2En-without-optimization

This model is a fine-tuned version of UBC-NLP/AraT5v2-base-1024 on the opus100 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0042
  • Bleu: 10.4288
  • Gen Len: 10.739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 18
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
10.1448 1.0 210 3.9256 2.8335 9.4988
4.9822 2.0 420 3.5760 4.9001 10.3329
4.42 3.0 630 3.4037 5.6973 10.301
4.1414 4.0 840 3.3057 6.5224 10.5559
3.9451 5.0 1050 3.2169 7.409 10.7571
3.7972 6.0 1260 3.1759 8.1445 10.5908
3.6687 7.0 1470 3.1340 8.246 10.7451
3.5494 8.0 1680 3.1098 8.5656 10.7616
3.4748 9.0 1890 3.0749 9.052 10.8798
3.3945 10.0 2100 3.0725 9.3223 10.6794
3.314 11.0 2310 3.0511 9.67 10.6871
3.2606 12.0 2520 3.0398 9.6105 10.6531
3.2314 13.0 2730 3.0211 10.0661 10.752
3.1557 14.0 2940 3.0188 10.0724 10.7188
3.1571 15.0 3150 3.0148 10.3648 10.7596
3.1213 16.0 3360 3.0061 10.4008 10.7784
3.1111 17.0 3570 3.0077 10.4588 10.7155
3.0851 18.0 3780 3.0042 10.4288 10.739

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0