|
--- |
|
base_model: UBC-NLP/AraT5v2-base-1024 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- opus100 |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: finetune-t5-base-on-opus100-Ar2En-without-optimization |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: opus100 |
|
type: opus100 |
|
config: ar-en |
|
split: train[:7000] |
|
args: ar-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 10.4288 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune-t5-base-on-opus100-Ar2En-without-optimization |
|
|
|
This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on the opus100 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0042 |
|
- Bleu: 10.4288 |
|
- Gen Len: 10.739 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 18 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| 10.1448 | 1.0 | 210 | 3.9256 | 2.8335 | 9.4988 | |
|
| 4.9822 | 2.0 | 420 | 3.5760 | 4.9001 | 10.3329 | |
|
| 4.42 | 3.0 | 630 | 3.4037 | 5.6973 | 10.301 | |
|
| 4.1414 | 4.0 | 840 | 3.3057 | 6.5224 | 10.5559 | |
|
| 3.9451 | 5.0 | 1050 | 3.2169 | 7.409 | 10.7571 | |
|
| 3.7972 | 6.0 | 1260 | 3.1759 | 8.1445 | 10.5908 | |
|
| 3.6687 | 7.0 | 1470 | 3.1340 | 8.246 | 10.7451 | |
|
| 3.5494 | 8.0 | 1680 | 3.1098 | 8.5656 | 10.7616 | |
|
| 3.4748 | 9.0 | 1890 | 3.0749 | 9.052 | 10.8798 | |
|
| 3.3945 | 10.0 | 2100 | 3.0725 | 9.3223 | 10.6794 | |
|
| 3.314 | 11.0 | 2310 | 3.0511 | 9.67 | 10.6871 | |
|
| 3.2606 | 12.0 | 2520 | 3.0398 | 9.6105 | 10.6531 | |
|
| 3.2314 | 13.0 | 2730 | 3.0211 | 10.0661 | 10.752 | |
|
| 3.1557 | 14.0 | 2940 | 3.0188 | 10.0724 | 10.7188 | |
|
| 3.1571 | 15.0 | 3150 | 3.0148 | 10.3648 | 10.7596 | |
|
| 3.1213 | 16.0 | 3360 | 3.0061 | 10.4008 | 10.7784 | |
|
| 3.1111 | 17.0 | 3570 | 3.0077 | 10.4588 | 10.7155 | |
|
| 3.0851 | 18.0 | 3780 | 3.0042 | 10.4288 | 10.739 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.0 |
|
|