|
--- |
|
library_name: transformers |
|
datasets: |
|
- elyza/ELYZA-tasks-100 |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
base_model: |
|
- llm-jp/llm-jp-3-13b-instruct |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
## Required Libraries and Their Versions |
|
|
|
- trl==0.12.2 |
|
- transformers<4.47.0 |
|
- tokenizers==0.21.0 |
|
|
|
## Usage |
|
|
|
```py |
|
results = [] |
|
system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書きなさい。" |
|
for data in tqdm(datasets): |
|
|
|
input_text = data["input"] |
|
|
|
prompt = f""" |
|
{system_text} |
|
### 指示 |
|
{input_text} |
|
### 応答 |
|
""" |
|
|
|
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) |
|
attention_mask = torch.ones_like(tokenized_input) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
tokenized_input, |
|
attention_mask=attention_mask, |
|
max_new_tokens=100, |
|
do_sample=False, |
|
repetition_penalty=1.2, |
|
pad_token_id=tokenizer.eos_token_id |
|
)[0] |
|
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) |
|
|
|
results.append({"task_id": data["task_id"], "input": input_text, "output": output}) |
|
|
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
- **Model type:** Transformer-based Language Model |
|
|
|
## Datasets |
|
|
|
### Instruction tuning |
|
|
|
| Language | Dataset | description | |
|
|:---|:---|:---| |
|
|Japanese|[elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)| A manually constructed instruction dataset | |
|
|
|
## License |
|
|
|
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
|