metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.8836524300441826
- name: Recall
type: recall
value: 0.8982035928143712
- name: F1
type: f1
value: 0.8908685968819599
- name: Accuracy
type: accuracy
value: 0.9057724957555179
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3809
- Precision: 0.8837
- Recall: 0.8982
- F1: 0.8909
- Accuracy: 0.9058
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.3125 | 250 | 1.4179 | 0.5786 | 0.6751 | 0.6231 | 0.7037 |
1.8601 | 0.625 | 500 | 0.9021 | 0.7458 | 0.8016 | 0.7727 | 0.7988 |
1.8601 | 0.9375 | 750 | 0.6900 | 0.8096 | 0.8338 | 0.8215 | 0.8294 |
0.7675 | 1.25 | 1000 | 0.5915 | 0.8128 | 0.8481 | 0.8300 | 0.8544 |
0.7675 | 1.5625 | 1250 | 0.5041 | 0.8381 | 0.8638 | 0.8507 | 0.8722 |
0.4979 | 1.875 | 1500 | 0.4669 | 0.8413 | 0.8728 | 0.8567 | 0.8850 |
0.4979 | 2.1875 | 1750 | 0.4080 | 0.8628 | 0.8847 | 0.8736 | 0.8990 |
0.384 | 2.5 | 2000 | 0.3878 | 0.8731 | 0.8907 | 0.8818 | 0.9003 |
0.384 | 2.8125 | 2250 | 0.3880 | 0.8794 | 0.8952 | 0.8872 | 0.9032 |
0.3439 | 3.125 | 2500 | 0.3809 | 0.8837 | 0.8982 | 0.8909 | 0.9058 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0