|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8836524300441826 |
|
- name: Recall |
|
type: recall |
|
value: 0.8982035928143712 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8908685968819599 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9057724957555179 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3809 |
|
- Precision: 0.8837 |
|
- Recall: 0.8982 |
|
- F1: 0.8909 |
|
- Accuracy: 0.9058 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.3125 | 250 | 1.4179 | 0.5786 | 0.6751 | 0.6231 | 0.7037 | |
|
| 1.8601 | 0.625 | 500 | 0.9021 | 0.7458 | 0.8016 | 0.7727 | 0.7988 | |
|
| 1.8601 | 0.9375 | 750 | 0.6900 | 0.8096 | 0.8338 | 0.8215 | 0.8294 | |
|
| 0.7675 | 1.25 | 1000 | 0.5915 | 0.8128 | 0.8481 | 0.8300 | 0.8544 | |
|
| 0.7675 | 1.5625 | 1250 | 0.5041 | 0.8381 | 0.8638 | 0.8507 | 0.8722 | |
|
| 0.4979 | 1.875 | 1500 | 0.4669 | 0.8413 | 0.8728 | 0.8567 | 0.8850 | |
|
| 0.4979 | 2.1875 | 1750 | 0.4080 | 0.8628 | 0.8847 | 0.8736 | 0.8990 | |
|
| 0.384 | 2.5 | 2000 | 0.3878 | 0.8731 | 0.8907 | 0.8818 | 0.9003 | |
|
| 0.384 | 2.8125 | 2250 | 0.3880 | 0.8794 | 0.8952 | 0.8872 | 0.9032 | |
|
| 0.3439 | 3.125 | 2500 | 0.3809 | 0.8837 | 0.8982 | 0.8909 | 0.9058 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|