content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def loyalty(): """Пересчитать индекс лояльности""" articles = Article.objects.all() if articles.count() == 0: logger.info('Пока нет статей для пересчёта. Выходим...') return False logger.info('Начало пересчёта индекса лояльности') logger.info(f'Количество материалов: {articles.count()}') texts = [item.text for item in articles] dt = DefineText(texts) themes, _ = dt.article_theme() sentiments, _ = dt.article_sentiment() for article, theme, sentiment in zip(articles, themes, sentiments): article.theme = bool(theme) article.sentiment = sentiment article.save()
3db3214e1d6d2f2f3d54f9c1d01807ed9558ef6b
1,800
import json def user_info(request): """Returns a JSON object containing the logged-in student's information.""" student = request.user.student return HttpResponse(json.dumps({ 'academic_id': student.academic_id, 'current_semester': int(student.current_semester), 'name': student.name, 'username': request.user.username}), content_type="application/json")
41c1bcc8f69d97f76acbe7f15c4bc5cbc2ea6b60
1,801
def extract_brain_activation(brainimg, mask, roilabels, method='mean'): """ Extract brain activation from ROI. Parameters ---------- brainimg : array A 4D brain image array with the first dimension correspond to pictures and the rest 3D correspond to brain images mask : array A 3D brain image array with the same size as the rest 3D of brainimg. roilabels : list, array ROI labels method : str Method to integrate activation from each ROI, by default is 'mean'. Returns ------- roisignals : list Extracted brain activation. Each element in the list is the extracted activation of the roilabels. Due to different label may contain different number of activation voxels, the output activation could not stored as numpy array list. """ if method == 'mean': calc_way = partial(np.mean, axis=1) elif method == 'std': calc_way = partial(np.std, axis=1) elif method == 'max': calc_way = partial(np.max, axis=1) elif method == 'voxel': calc_way = np.array else: raise Exception('We haven''t support this method, please contact authors to implement.') assert brainimg.shape[1:] == mask.shape, "brainimg and mask are mismatched." roisignals = [] for i, lbl in enumerate(roilabels): roisignals.append(calc_way(brainimg[:, mask==lbl])) return roisignals
fac20ea1c99696aab84137964dbbfdfa7bd66612
1,802
def logit(x): """ Elementwise logit (inverse logistic sigmoid). :param x: numpy array :return: numpy array """ return np.log(x / (1.0 - x))
4ce2474a9eb97208613268d3005959a4a162dbe0
1,803
import hashlib import binascii def _base58_decode(address: str) -> bool: """ SEE https://en.bitcoin.it/wiki/Base58Check_encoding """ try: decoded_address = base58.b58decode(address).hex() result, checksum = decoded_address[:-8], decoded_address[-8:] except ValueError: return False else: for _ in range(1, 3): result = hashlib.sha256(binascii.unhexlify(result)).hexdigest() return checksum == result[:8]
e0610e882b64511743376ce7a0370e7600436411
1,804
def get_average_matrix(shape, matrices): """ Take the average matrix by a list of matrices of same shape """ return _ImageConvolution().get_average_matrix(shape, matrices)
dfdd4995751bb2894a7bada961d863bb800e79a5
1,805
def pph_custom_pivot(n, t0): """ O algoritmo recebe uma lista n com pares de coordenadas (a, b) e retorna uma lista s, somente com as coordenadas que juntas tenham uma razão máxima do tipo r = ((a0 + a1 + ... + an) / (b0 + b1 + ... + bn)). Esse algoritmo tem complexidade de pior caso O(n^2) quando a razão de todos os elementos serão sempre menores que a razão do pivot. Para encontrar o elemento pivot, o algoritmo faz o seguinte cálculo: pivot = [a0 + (a1 + a2 + ... + an)] / [b0 + (b1 + b2 + ... + bn)] Args: n (list[Pair]): Lista com coordenadas do tipo Pair. t0 (Pair): a0 e b0 iniciais de referência para o algoritmo. Returns: s (list[Pair]): Lista com coordenadas que maximizam a razão r. """ # 0- Declaração do objeto HiberbolicSet s = HiperbolicSet(t0.a, t0.b) k = n # 1- Calcula um pivot usando a função r = ((a0 + a1 + ... + an) / (b0 + b1 + ... + bn)) em O(n) pivot = custom_pivot(k, None, t0.a, t0.b) # 2- Chama os steps da recursão para o cálculo do pph customizado res = pph_steps(k, pivot, pivot.a, pivot.b) # 6- Adiciona a lista com os pares que maximizam a razão - O(n) s.add_all(res) return s
7853aeac0f4acae6270e82b5c1568f6d0858b779
1,806
def music(hot_music_url, **kwargs): """ get hot music result :return: HotMusic object """ result = fetch(hot_music_url, **kwargs) # process json data datetime = parse_datetime(result.get('active_time')) # video_list = result.get('music_list', []) musics = [] music_list = result.get('music_list', []) for item in music_list: music = data_to_music(item.get('music_info', {})) music.hot_count = item.get('hot_value') musics.append(music) # construct HotMusic object and return return HotMusic(datetime=datetime, data=musics)
cf49e0648bb84ff9aa033bf49f732260770b47f5
1,807
def parse_from_docstring(docstring, spec='operation'): """Returns path spec from docstring""" # preprocess lines lines = docstring.splitlines(True) parser = _ParseFSM(FSM_MAP, lines, spec) parser.run() return parser.spec
37026d6e0fd0edf476d59cdd33ac7ec2d04eb38d
1,808
def collection_headings(commodities) -> CommodityCollection: """Returns a special collection of headings to test header and chapter parenting rules.""" keys = ["9900_80_0", "9905_10_0", "9905_80_0", "9910_10_0", "9910_80_0"] return create_collection(commodities, keys)
545419cd79fbd86d0a16aad78996977ea1ff4605
1,809
import getpass def get_ssh_user(): """Returns ssh username for connecting to cluster workers.""" return getpass.getuser()
166048aa258bd0b2c926d03478e8492a405b0f7e
1,810
def tryf(body, *handlers, elsef=None, finallyf=None): """``try``/``except``/``finally`` as a function. This allows lambdas to handle exceptions. ``body`` is a thunk (0-argument function) that represents the body of the ``try`` block. ``handlers`` is ``(excspec, handler), ...``, where ``excspec`` is either an exception type, or a tuple of exception types. ``handler`` is a 0-argument or 1-argument function. If it takes an argument, it gets the exception instance. Handlers are tried in the order specified. ``elsef`` is a thunk that represents the ``else`` block. ``finallyf`` is a thunk that represents the ``finally`` block. Upon normal completion, the return value of ``tryf`` is the return value of ``elsef`` if that was specified, otherwise the return value of ``body``. If an exception was caught by one of the handlers, the return value of ``tryf`` is the return value of the exception handler that ran. If you need to share variables between ``body`` and ``finallyf`` (which is likely, given what a ``finally`` block is intended to do), consider wrapping the ``tryf`` in a ``let`` and storing your variables there. If you want them to leak out of the ``tryf``, you can also just create an ``env`` at an appropriate point, and store them there. """ def accepts_arg(f): try: if arity_includes(f, 1): return True except UnknownArity: # pragma: no cover return True # just assume it return False def isexceptiontype(exc): try: if issubclass(exc, BaseException): return True except TypeError: # "issubclass() arg 1 must be a class" pass return False # validate handlers for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types if not all(isexceptiontype(t) for t in excspec): raise TypeError(f"All elements of a tuple excspec must be exception types, got {excspec}") elif not isexceptiontype(excspec): # single exception type raise TypeError(f"excspec must be an exception type or tuple of exception types, got {excspec}") # run try: ret = body() except BaseException as exception: # Even if a class is raised, as in `raise StopIteration`, the `raise` statement # converts it into an instance by instantiating with no args. So we need no # special handling for the "class raised" case. # https://docs.python.org/3/reference/simple_stmts.html#the-raise-statement # https://stackoverflow.com/questions/19768515/is-there-a-difference-between-raising-exception-class-and-exception-instance/19768732 exctype = type(exception) for excspec, handler in handlers: if isinstance(excspec, tuple): # tuple of exception types # this is safe, exctype is always a class at this point. if any(issubclass(exctype, t) for t in excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: # single exception type if issubclass(exctype, excspec): if accepts_arg(handler): return handler(exception) else: return handler() else: if elsef is not None: return elsef() return ret finally: if finallyf is not None: finallyf()
bde4282c4422272717e48a546430d2b93e9d0529
1,811
def obtain_sheet_music(score, most_frequent_dur): """ Returns unformated sheet music from score """ result = "" octaves = [3 for i in range(12)] accidentals = [False for i in range(7)] for event in score: for note_indx in range(len(event[0])): data = notenum2string(event[0][note_indx], accidentals, octaves) result += data[0] accidentals = data[1] octaves = data[2] if note_indx != len(event[0])-1: result += '-' if event[1] != most_frequent_dur: # Quarters are default result += '/' result += dur2mod(event[1], most_frequent_dur) result += ',' return result
4c216f2cca0d2054af355bc097c22ff2b7662969
1,812
def adjacency_matrix(edges): """ Convert a directed graph to an adjacency matrix. Note: The distance from a node to itself is 0 and distance from a node to an unconnected node is defined to be infinite. Parameters ---------- edges : list of tuples list of dependencies between nodes in the graph [(source node, destination node, weight), ...] Returns ------- out : tuple (names, adjacency matrix) names - list of unique nodes in the graph adjacency matrix represented as list of lists """ # determine the set of unique nodes names = set() for src, dest, _ in edges: # add source and destination nodes names.add(src) names.add(dest) # convert set of names to sorted list names = sorted(names) # determine initial adjacency matrix with infinity weights matrix = [[float('Inf')] * len(names) for _ in names] for src, dest, weight in edges: # update weight in adjacency matrix matrix[names.index(src)][names.index(dest)] = weight for src in names: matrix[names.index(src)][names.index(src)] = 0 # return list of names and adjacency matrix return names, matrix
b8743a6fa549b39d5cb24ae1f276e911b954ee5a
1,813
def estimate_Cn(P=1013, T=273.15, Ct=1e-4): """Use Weng et al to estimate Cn from meteorological data. Parameters ---------- P : `float` atmospheric pressure in hPa T : `float` temperature in Kelvin Ct : `float` atmospheric struction constant of temperature, typically 10^-5 - 10^-2 near the surface Returns ------- `float` Cn """ return (79 * P / (T ** 2)) * Ct ** 2 * 1e-12
b74dd0c91197c24f880521a06d6bcd205d749448
1,814
import ctypes def sg_get_scsi_status_str(scsi_status): """ Fetch scsi status string. """ buff = _get_buffer(128) libsgutils2.sg_get_scsi_status_str(scsi_status, 128, ctypes.byref(buff)) return buff.value.decode('utf-8')
2bdf7feb455ccbab659961ddbba04a9fa1daeb85
1,815
import math def numpy_grid(x, pad=0, nrow=None, uint8=True): """ thin wrap to make_grid to return frames ready to save to file args pad (int [0]) same as utils.make_grid(padding) nrow (int [None]) # defaults to horizonally biased rectangle closest to square uint8 (bool [True]) convert to img in range 0-255 uint8 """ x = x.clone().detach().cpu() nrow = nrow or int(math.sqrt(x.shape[0])) x = ((utils.make_grid(x, nrow=nrow, padding=pad).permute(1,2,0) - x.min())/(x.max()-x.min())).numpy() if uint8: x = (x*255).astype("uint8") return x
e83452bb2387d79ca307840487bb4bdd24efed87
1,816
import functools def if_active(f): """decorator for callback methods so that they are only called when active""" @functools.wraps(f) def inner(self, loop, *args, **kwargs): if self.active: return f(self, loop, *args, **kwargs) return inner
83b4eabaafa9602ad0547f87aeae99a63872152a
1,817
def obs_all_node_target_pairs_one_hot(agent_id: int, factory: Factory) -> np.ndarray: """One-hot encoding (of length nodes) of the target location for each node. Size of nodes**2""" num_nodes = len(factory.nodes) node_pair_target = np.zeros(num_nodes ** 2) for n in range(num_nodes): core_target_index = [] if factory.nodes[n].table != None and factory.nodes[n].table.has_core(): core_target_index = [ factory.nodes.index(factory.nodes[n].table.core.current_target) ] node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.asarray( one_hot_encode(num_nodes, core_target_index) ) else: node_pair_target[n * num_nodes : (n + 1) * num_nodes] = np.zeros(num_nodes) return node_pair_target
aed5fa19baf28c798f1e064b878b148867d19053
1,818
from typing import Callable from typing import List import math def repeat_each_position(shape: GuitarShape, length: int = None, repeats: int = 2, order: Callable = asc) -> List[ List[FretPosition]]: """ Play each fret in the sequence two or more times """ if length is not None: div_length = math.ceil(length / repeats) else: div_length = length pattern = order(shape, length=div_length) new_positions = [] for positions in pattern: new_positions.extend([positions] * repeats) if length is not None and len(new_positions) != length: new_positions = adjust_length(new_positions, length) return new_positions
9783e218134839410e02d4bc5210804d6a945d6d
1,819
import csv import gzip from StringIO import StringIO import pandas def gz_csv_read(file_path, use_pandas=False): """Read a gzipped csv file. """ with gzip.open(file_path, 'r') as infile: if use_pandas: data = pandas.read_csv(StringIO(infile.read())) else: reader = csv.reader(StringIO(infile.read())) data = [row for row in reader] return data
725132f37454b66b6262236966c96d4b48a81049
1,820
def init_block(in_channels, out_channels, stride, activation=nn.PReLU): """Builds the first block of the MobileFaceNet""" return nn.Sequential( nn.BatchNorm2d(3), nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), make_activation(activation) )
966ccb1ca1cb7e134db3ac40bb4daf54950743b1
1,821
def address_working(address, value=None): """ Find, insert or delete from database task address :param address: website address example: https://www.youtube.com/ :param value: True: add , False: remove, default: find :return: """ global db if value is True: db.tasks.insert_one({'Address': address}) return True if value is False: db.tasks.delete_many({'Address': address}) return False x = list(db.tasks.find({'Address': address})) if len(x) == 0: return False else: return True
5879fb6f3d4756aceb8424a5fc22fd232841802c
1,822
def merge_default_values(resource_list, default_values): """ Generate a new list where each item of original resource_list will be merged with the default_values. Args: resource_list: list with items to be merged default_values: properties to be merged with each item list. If the item already contains some property the original value will be maintained. Returns: list: list containing each item merged with default_values """ def merge_item(resource): return merge_resources(default_values, resource) return lmap(merge_item, resource_list)
c2e98260a34762d17185eacdfc2fb4be1b3a45f3
1,823
from datetime import datetime import pytz def finish_scheduling(request, schedule_item=None, payload=None): """ Finalize the creation of a scheduled action. All required data is passed through the payload. :param request: Request object received :param schedule_item: ScheduledAction item being processed. If None, it has to be extracted from the information in the payload. :param payload: Dictionary with all the required data coming from previous requests. :return: """ # Get the payload from the session if not given if payload is None: payload = request.session.get(session_dictionary_name) # If there is no payload, something went wrong. if payload is None: # Something is wrong with this execution. Return to action table. messages.error(request, _('Incorrect action scheduling invocation.')) return redirect('action:index') # Get the scheduled item if needed if not schedule_item: s_item_id = payload.get('schedule_id') if not s_item_id: messages.error(request, _('Incorrect parameters in action scheduling')) return redirect('action:index') # Get the item being processed schedule_item = ScheduledAction.objects.get(pk=s_item_id) # Check for exclude values and store them if needed exclude_values = payload.get('exclude_values') if exclude_values: schedule_item.exclude_values = exclude_values schedule_item.status = ScheduledAction.STATUS_PENDING schedule_item.save() # Create the payload to record the event in the log log_payload = { 'action': schedule_item.action.name, 'action_id': schedule_item.action.id, 'execute': schedule_item.execute.isoformat(), } if schedule_item.action.action_type == Action.PERSONALIZED_TEXT: log_payload.update({ 'email_column': schedule_item.item_column.name, 'subject': schedule_item.payload.get('subject'), 'cc_email': schedule_item.payload.get('cc_email', []), 'bcc_email': schedule_item.payload.get('bcc_email', []), 'send_confirmation': schedule_item.payload.get('send_confirmation', False), 'track_read': schedule_item.payload.get('track_read', False) }) log_type = Log.SCHEDULE_EMAIL_EDIT elif schedule_item.action.action_type == Action.PERSONALIZED_JSON: ivalue = None if schedule_item.item_column: ivalue = schedule_item.item_column.name log_payload.update({ 'item_column': ivalue, 'token': schedule_item.payload.get('subject') }) log_type = Log.SCHEDULE_JSON_EDIT else: log_type = None # Create the log Log.objects.register(request.user, log_type, schedule_item.action.workflow, log_payload) # Notify the user. Show the time left until execution and a link to # view the scheduled events with possibility of editing/deleting. # Successful processing. now = datetime.datetime.now(pytz.timezone(settings.TIME_ZONE)) tdelta = schedule_item.execute - now # Reset object to carry action info throughout dialogs request.session[session_dictionary_name] = {} request.session.save() # Create the timedelta string delta_string = '' if tdelta.days != 0: delta_string += ugettext('{0} days').format(tdelta.days) hours = tdelta.seconds / 3600 if hours != 0: delta_string += ugettext(', {0} hours').format(hours) minutes = (tdelta.seconds % 3600) / 60 if minutes != 0: delta_string += ugettext(', {0} minutes').format(minutes) # Successful processing. return render(request, 'scheduler/schedule_done.html', {'tdelta': delta_string, 's_item': schedule_item})
fa0fb4648ef9d750eca9f19ea435fd57ab433ad8
1,824
import json def analyze(results_file, base_path): """ Parse and print the results from gosec audit. """ # Load gosec json Results File with open(results_file) as f: issues = json.load(f)['Issues'] if not issues: print("Security Check: No Issues Detected!") return ([], [], []) else: high_risk = list() medium_risk = list() low_risk = list() # Sort Issues for issue in issues: if issue['severity'] == 'HIGH': high_risk.append(issue) elif issue['severity'] == 'MEDIUM': medium_risk.append(issue) elif issue['severity'] == 'LOW': low_risk.append(issue) # Print Summary print() print('Security Issue Summary:') print(' Found ' + str(len(high_risk)) + ' High Risk Issues') print(' Found ' + str(len(medium_risk)) + ' Medium Risk Issues') print(' Found ' + str(len(low_risk)) + ' Low Risk Issues') # Print Issues In Order of Importance if high_risk: header = ('= High Security Risk Issues =') print_category(header, high_risk, base_path) if medium_risk: header = ('= Medium Security Risk Issues =') print_category(header, medium_risk, base_path) if low_risk: header = ('= Low Security Risk Issues =') print_category(header, low_risk, base_path) return (high_risk, medium_risk, low_risk)
a016f4ba389305103c9bbab1db94706053237e5a
1,825
def _peaks(image,nr,minvar=0): """Divide image into nr quadrants and return peak value positions.""" n = np.ceil(np.sqrt(nr)) quadrants = _rects(image.shape,n,n) peaks = [] for q in quadrants: q_image = image[q.as_slice()] q_argmax = q_image.argmax() q_maxpos = np.unravel_index(q_argmax,q.shape) if q_image.flat[q_argmax] > minvar: peaks.append(np.array(q_maxpos) + q.origin) return peaks
f7ecc3e5fafd55c38a85b4e3a05a04b25cbd97cf
1,826
def pprint(value): """A wrapper around pprint.pprint -- for debugging, really.""" try: return pformat(value) except Exception as e: return "Error in formatting: %s: %s" % (e.__class__.__name__, e)
1ce07b2f8f3e5e15c5f5cae8f7642ab97201a559
1,827
def connection_type_validator(type): """ Property: ConnectionInput.ConnectionType """ valid_types = [ "CUSTOM", "JDBC", "KAFKA", "MARKETPLACE", "MONGODB", "NETWORK", "SFTP", ] if type not in valid_types: raise ValueError("% is not a valid value for ConnectionType" % type) return type
cc2ed6096097c719b505356e69a5bb5cdc109495
1,828
import matplotlib.pyplot as plt def plot_time_series(meter_data, temperature_data, **kwargs): """ Plot meter and temperature data in dual-axes time series. Parameters ---------- meter_data : :any:`pandas.DataFrame` A :any:`pandas.DatetimeIndex`-indexed DataFrame of meter data with the column ``value``. temperature_data : :any:`pandas.Series` A :any:`pandas.DatetimeIndex`-indexed Series of temperature data. **kwargs Arbitrary keyword arguments to pass to :any:`plt.subplots <matplotlib.pyplot.subplots>` Returns ------- axes : :any:`tuple` of :any:`matplotlib.axes.Axes` Tuple of ``(ax_meter_data, ax_temperature_data)``. """ # TODO(philngo): include image in docs. figure = kwargs.pop('figure') if not figure: try: except ImportError: # pragma: no cover raise ImportError("matplotlib is required for plotting.") default_kwargs = {"figsize": (16, 4)} default_kwargs.update(kwargs) fig, ax1 = plt.subplots(**default_kwargs) else: fig = figure ax1 = figure.subplots(**default_kwargs) ax1.plot( meter_data.index, meter_data.value, color="C0", label="Energy Use", drawstyle="steps-post", ) ax1.set_ylabel("Energy Use") ax2 = ax1.twinx() ax2.plot( temperature_data.index, temperature_data, color="C1", label="Temperature", alpha=0.8, ) ax2.set_ylabel("Temperature") fig.legend() return ax1, ax2
9e77f5e997d86ccb6932b3f192f979b3630d9458
1,829
import calendar import time def render_pretty_time(jd): """Convert jd into a pretty string representation""" year, month, day, hour_frac = sweph.revjul(jd) _, hours, minutes, seconds = days_frac_to_dhms(hour_frac/24) time_ = calendar.timegm((year,month,day,hours,minutes,seconds,0,0,0)) return time.strftime('%e %b %Y %H:%M UTC', time.gmtime(time_))
07c63429ae7881fbdec867e8bebab7578bfaacdd
1,830
import json def jsonify(obj): """Dump an object to JSON and create a Response object from the dump. Unlike Flask's native implementation, this works on lists. """ dump = json.dumps(obj) return Response(dump, mimetype='application/json')
72e1fb425507d5905ef96de05a146805f5aa4175
1,831
def section(stree): """ Create sections in a :class:`ScheduleTree`. A section is a sub-tree with the following properties: :: * The root is a node of type :class:`NodeSection`; * The immediate children of the root are nodes of type :class:`NodeIteration` and have same parent. * The :class:`Dimension` of the immediate children are either: :: * identical, OR * different, but all of type :class:`SubDimension`; * The :class:`Dimension` of the immediate children cannot be a :class:`TimeDimension`. """ class Section(object): def __init__(self, node): self.parent = node.parent self.dim = node.dim self.nodes = [node] def is_compatible(self, node): return (self.parent == node.parent and (self.dim == node.dim or node.dim.is_Sub)) # Search candidate sections sections = [] for i in range(stree.height): # Find all sections at depth `i` section = None for n in findall(stree, filter_=lambda n: n.depth == i): if any(p in flatten(s.nodes for s in sections) for p in n.ancestors): # Already within a section continue elif not n.is_Iteration or n.dim.is_Time: section = None elif section is None or not section.is_compatible(n): section = Section(n) sections.append(section) else: section.nodes.append(n) # Transform the schedule tree by adding in sections for i in sections: node = NodeSection() processed = [] for n in list(i.parent.children): if n in i.nodes: n.parent = node if node not in processed: processed.append(node) else: processed.append(n) i.parent.children = processed return stree
edd6682d1ff2a637049a801d548181d35e07961a
1,832
def was_csv_updated() -> bool: """ This function compares the last modified time on the csv file to the actions folder to check which was last modified. 1. check if csv or files have more actions. 2. if same number of actions, assume the update was made in the csv """ csv_actions = get_cas_from_csv() file_actions = get_cas_from_files() return ( True if len(csv_actions) >= len(file_actions) else False )
7cf78696fa59e8abbe968916191600a265c96305
1,833
import math def MakeBands(dR, numberOfBands, nearestInteger): """ Divide a range into bands :param dR: [min, max] the range that is to be covered by the bands. :param numberOfBands: the number of bands, a positive integer. :param nearestInteger: if True then [floor(min), ceil(max)] is used. :return: A List consisting of [min, midpoint, max] for each band. """ bands = list() if (dR[1] < dR[0]) or (numberOfBands <= 0): return bands x = list(dR) if nearestInteger: x[0] = math.floor(x[0]) x[1] = math.ceil(x[1]) dx = (x[1] - x[0]) / float(numberOfBands) b = [x[0], x[0] + dx / 2.0, x[0] + dx] i = 0 while i < numberOfBands: bands.append(b) b = [b[0] + dx, b[1] + dx, b[2] + dx] i += 1 return bands
104720371d1f83bf2ee2c8fddbf05401ec034560
1,834
import math def euler719(n=10**12): """Solution for problem 719.""" return sum(i*i for i in range(2, 1 + int(math.sqrt(n))) if can_be_split_in_sum(i*i, i))
3f814ed837ad58f73f901a81af34ac31b520b372
1,835
def inner(a, b): """ Inner product of two tensors. Ordinary inner product of vectors for 1-D tensors (without complex conjugation), in higher dimensions a sum product over the last axes. Note: Numpy argument out is not supported. On GPU, the supported dtypes are np.float16, and np.float32. On CPU, the supported dtypes are np.float16, np.float32, and np.float64. Args: a (Tensor): input tensor. If a and b are nonscalar, their last dimensions must match. b (Tensor): input tensor. If a and b are nonscalar, their last dimensions must match. Returns: Tensor or scalar, out.shape = a.shape[:-1] + b.shape[:-1]. Raises: ValueError: if x1.shape[-1] != x2.shape[-1]. Supported Platforms: Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> a = np.ones((5, 3)) >>> b = np.ones((2, 7, 3)) >>> output = np.inner(a, b) >>> print(output) [[[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]] [[3. 3. 3. 3. 3. 3. 3.] [3. 3. 3. 3. 3. 3. 3.]]] """ if F.rank(a) == 0 or F.rank(b) == 0: a = _expand(a, 1) b = _expand(b, 1) if F.rank(a) < F.rank(b): a, b = b, a return F.tensor_mul(a, b) _ = _check_shape_aligned(F.shape(a), F.shape(b)) aligned_shape_a = (F.shape_mul(F.shape(a)[:-1]), F.shape(a)[-1]) aligned_shape_b = (F.shape_mul(F.shape(b)[:-1]), F.shape(a)[-1]) a_aligned = F.reshape(a, aligned_shape_a) b_aligned = F.reshape(b, aligned_shape_b) res = _matmul_T(a_aligned, b_aligned) res = F.reshape(res, F.shape(a)[:-1] + F.shape(b)[:-1]) return res
b09ee6e22fd6c9bd7c1fd758fa62b38ad8fae1ab
1,836
def stern_warning(warn_msg: str) -> str: """Wraps warn_msg so that it prints in red.""" return _reg(colorama.Fore.RED, warn_msg)
639f0f6aaf3ce1f6ad46ed0f5d852be3457337fb
1,837
def alt2temp_ratio(H, alt_units=default_alt_units): """ Return the temperature ratio (temperature / standard temperature for sea level). The altitude is specified in feet ('ft'), metres ('m'), statute miles, ('sm') or nautical miles ('nm'). If the units are not specified, the units in default_units.py are used. Examples: Calculate the temperature ratio at 8,000 (default altitude units) >>> alt2temp_ratio(8000) 0.94499531494013533 Calculate the temperature ratio at 8,000 m. >>> alt2temp_ratio(8000, alt_units = 'm') 0.81953843484296374 """ # function tested in tests/test_std_atm.py return alt2temp(H, alt_units, temp_units='K') / T0
c46ca3d63169676ccda223f475927a902a82a15e
1,838
def encode_message(key, message): """ Encodes the message (string) using the key (string) and pybase64.urlsafe_b64encode functionality """ keycoded = [] if not key: key = chr(0) # iterating through the message for i in range(len(message)): # assigning a key_character based on the given key key_character = key[i % len(key)] # each char of the message has the key_char added (in ascii values) # and is converted back to normal, and appended to the keycoded values keycoded.append( chr((ord(message[i]) + ord(key_character)) % 256) ) encoded = pybase64.urlsafe_b64encode( "".join(keycoded).encode() # convert to bytes object (builtin) ).decode() # back to text return encoded
ea3a5403878dc58f1faa586c9851863a670c8cd0
1,839
import argparse import os def cfg(): """Configuration of argument parser.""" parser = argparse.ArgumentParser( description="Crawl SolarEdge and stores results in InfluxDB", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # TODO: error message when missing env variable parser.add_argument('--gardena-email', required=False, default=os.getenv('GARDENA_EMAIL'), help="Gardena email") # noqa parser.add_argument('--gardena-password', required=False, default=os.getenv('GARDENA_PASSWORD'), help="Gardena password") # noqa parser.add_argument('--gardena-application-id', required=False, default=os.getenv('GARDENA_APPLICATION_ID'), help="Gardena application id") # noqa parser.add_argument('--influxdb-host', required=False, default=os.getenv('INFLUXDB_HOST'), help="influx db host") # noqa parser.add_argument('--influxdb-port', required=False, default=os.getenv('INFLUXDB_PORT'), help="influx db port") # noqa parser.add_argument('--influxdb-user', required=False, default=os.getenv('INFLUXDB_PORT'), help="influx db user") # noqa parser.add_argument('--influxdb-pass', required=False, default=os.getenv('INFLUXDB_PASS'), help="influx db password") # noqa parser.add_argument('--influxdb-db', required=False, default=os.getenv('INFLUXDB_DB'), help="influx db database") # noqa parser.add_argument('-v', '--verbose', action='store_true') return parser.parse_args()
1aba01ccc8d0b99227d541d56e866fabd62a3941
1,840
from IPython.core.debugger import Pdb from IPython.Debugger import Pdb from IPython.Shell import IPShell import warnings def get_debugger(): """ Returns a debugger instance """ try: pdb = Pdb() except ImportError: try: IPShell(argv=[""]) pdb = Pdb() except ImportError: warnings.warn( 'pdb was selected as a debugger. If you want to use ipython as a debugger you have to "pip install radish-bdd[ipython-debugger]"' ) return pdb
bfc1600260b62dee8b89145635044ea6f0754064
1,841
def add_sibling(data, node_path, new_key, new_data, _i=0): """ Traversal-safe method to add a siblings data node. :param data: The data object you're traversing. :param node_path: List of path segments pointing to the node you're creating a sibling of. Same as node_path of traverse() :param new_key: The sibling key to create. :param new_data: The new data to be stored at the key. """ if _i < len(node_path) - 1: return add_sibling(data[node_path[_i]], node_path, new_key, new_data, _i + 1) else: data[new_key] = new_data
4bc11315eab686659edc9f7eb8479508d3ca37fb
1,842
def draw_pnl(ax, df): """ Draw p&l line on the chart. """ ax.clear() ax.set_title('Performance') index = df.index.unique() dt = index.get_level_values(level=0) pnl = index.get_level_values(level=4) ax.plot( dt, pnl, '-', color='green', linewidth=1.0, label='Performance' ) def perc(val): return '{:2f}'.format(val) ax.format_ydata = perc set_legend(ax) format_ax(ax)
6210c1861943bf61a7df8dbe2124f8f0f5e77e89
1,843
def maxRstat(Z, R, i): """ Return the maximum statistic for each non-singleton cluster and its children. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See `linkage` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]``, where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. See Also -------- linkage : for a description of what a linkage matrix is. inconsistent : for the creation of a inconsistency matrix. Examples -------- >>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat >>> from scipy.spatial.distance import pdist Given a data set ``X``, we can apply a clustering method to obtain a linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can be also used to obtain the inconsistency matrix ``R`` associated to this clustering process: >>> X = [[0, 0], [0, 1], [1, 0], ... [0, 4], [0, 3], [1, 4], ... [4, 0], [3, 0], [4, 1], ... [4, 4], [3, 4], [4, 3]] >>> Z = median(pdist(X)) >>> R = inconsistent(Z) >>> R array([[1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1. , 0. , 1. , 0. ], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.05901699, 0.08346263, 2. , 0.70710678], [1.74535599, 1.08655358, 3. , 1.15470054], [1.91202266, 1.37522872, 3. , 1.15470054], [3.25 , 0.25 , 3. , 0. ]]) `scipy.cluster.hierarchy.maxRstat` can be used to compute the maximum value of each column of ``R``, for each non-singleton cluster and its children: >>> maxRstat(Z, R, 0) array([1. , 1. , 1. , 1. , 1.05901699, 1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266, 3.25 ]) >>> maxRstat(Z, R, 1) array([0. , 0. , 0. , 0. , 0.08346263, 0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872, 1.37522872]) >>> maxRstat(Z, R, 3) array([0. , 0. , 0. , 0. , 0.70710678, 0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054, 1.15470054]) """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR
d63c6370e9d896a2e315012fa92fa650d1acaee8
1,844
import re def strip_characters(text): """Strip characters in text.""" t = re.sub('\(|\)|:|,|;|\.|’|”|“|\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t
763ddc837ef9be19aa067e362c312ebd88632ed7
1,845
import os def get_trained_model(datapath, dataset, image_size, nb_labels): """Recover model weights stored on the file system, and assign them into the `model` structure Parameters ---------- datapath : str Path of the data on the file system dataset : str Name of the dataset image_size : int Image size, in pixels (height=width) nb_labels : int Number of output labels Returns ------- keras.models.Model Convolutional neural network """ K.clear_session() net = SemanticSegmentationNetwork( network_name="semseg_postprocessing", image_size=image_size, nb_labels=nb_labels, dropout=1.0, architecture="unet", ) model = Model(net.X, net.Y) output_folder = utils.prepare_output_folder( datapath, dataset, "semseg" ) checkpoint_filename = "best-model-" + str(image_size) + "-full" + ".h5" checkpoint_full_path = os.path.join(output_folder, checkpoint_filename) if os.path.isfile(checkpoint_full_path): model.load_weights(checkpoint_full_path) logger.info( "Model weights have been recovered from %s" % checkpoint_full_path ) else: logger.info( ( "No available trained model for this image size" " with optimized hyperparameters. The " "inference will be done on an untrained model" ) ) return model
66d685553989a6e03df0b6db4891b5b423a6f937
1,846
def make_std_secgroup(name, desc="standard security group"): """ Returns a standarized resource group with rules for ping and ssh access. The returned resource can be further configured with additional rules by the caller. The name parameter is used to form the name of the ResourceGroup, and also provides the name of the SecGroup that is created in the ResourceGroup. """ return ResourceGroup("%s_std_secgroup" % name, group=SecGroup(name, desc), ping_rule=SecGroupRule("ping_rule", ctxt.comp.container.group, ip_protocol="icmp", from_port=-1, to_port=-1), ssh_rule=SecGroupRule("ssh_rule", ctxt.comp.container.group, ip_protocol="tcp", from_port=22, to_port=22), )
b53a65bdc04871c0d7ca56574c1852906b2d9351
1,847
def parse_plot_args(*args, **options): """Parse the args the same way plt.plot does.""" x = None y = None style = None if len(args) == 1: y = args[0] elif len(args) == 2: if isinstance(args[1], str): y, style = args else: x, y = args elif len(args) == 3: x, y, style = args return x, y, style
7687ed00785c1ab20fdf2f7bdc969fde3c75840f
1,848
def publications_classification_terms_get(search=None): # noqa: E501 """List of Classification Terms List of Classification Terms # noqa: E501 :param search: search term applied :type search: str :rtype: ApiOptions """ return 'do some magic!'
6633c91d59a5df7805979bd85a01f8eb1c269946
1,849
def lu_decompose(tri_diagonal): """Decompose a tri-diagonal matrix into LU form. Parameters ---------- tri_diagonal : TriDiagonal Represents the matrix to decompose. """ # WHR Appendix B: perform LU decomposition # # d[0] = hd[0] # b[i] = hu[i] # # Iterative algorithm: # d[i] = hd[i] - hu[i-1] a[i-1] # a[i] = hl[i] / d[i] hd, hu, hl = tri_diagonal b = hu # We want to vectorize the calculation of d and a as much as possible, # instead of using WHR's iterative algorithm directly. # # Substitute a[i-1] into the expression for d[i] to get a recurrence # relation for d: # # d[i] = hd[i] - hu[i-1] a[i-1] # = hd[i] - hu[i-1] * hl[i-1] / d[i-1] # # Let c[i] = hu[i-1] * hl[i-1]. # c[0] = 0, which is meaningless but convenient for the helper. # # d[i] = hd[i] - c[i] / d[i-1] c = np.empty_like(hd) c[0] = 0.0 np.multiply(hu, hl, c[1:]) np.negative(c, c) d = hd.copy() solve_lu_d(c, d) # a[i] = hl[i] / d[i] a = np.divide(hl, d[:-1]) return TriDiagonalLU(d, b, a)
423bb853d96b534055bd00b3c768158c86826b1b
1,850
def _card(item): """Handle card entries Returns: title (append " - Card" to the name, username (Card brand), password (card number), url (none), notes (including all card info) """ notes = item.get('notes', "") or "" # Add card info to the notes notes = notes + ("\n".join([f"{i}: {j}" for i, j in item.get('card', "").items()])) return f"{item['name']} - Card", \ item.get('card', {}).get('brand', '') or "", \ item.get('card', {}).get('number', "") or "", \ "", \ notes
fc7d5e4b960019b05ffe7ca02fd3d1a94d69b303
1,851
def s3(): """Boto3 S3 resource.""" return S3().resource
6402deaafa2ae7d599de1c8e8c67b9e669c06463
1,852
def SUE(xmean=None,ymean=None,xstdev=None,ystdev=None,rho=None, \ xskew=None,yskew=None,xmin=None,xmax=None,ymin=None,ymax=None, \ Npt=300,xisln=False,yisln=False): """ SKEWED UNCERTAINTY ELLIPSES (SUE) Function to plot uncertainty SUEs (or 1 sigma contour of a bivariate split-normal distribution). The parameters are the means (xmean,ymean), the standard deviations (xstdev,ystdev), the skewnesses (xskew,yskew) and the correlation coefficients (rho). The optional bounds (xmin,xmax,ymin,ymax) have the effect of truncating the SUEs in case there is a range of parameter space that is forbidden. It is important to notice that the xisln/yisln parameters are not related to the log settings of the axes where we plot the SUE, but are here to indicate that the moments of the variable to plot correspond to the natural logarithm (ln) of the variable we want to display. For instance, for displaying the ellipses of (x,y) where, for x, the moments are those of lnx, we would write: SUE(xmean=mean_of_lnx,ymean=mean_of_y,xstdev=stdev_of_lnx, \ ystdev=stdev_of_y,xskew=skewness_of_lnx,yskew=skewness_of_y, \ rho=correl_coeff_of_lnx_and_y,xisln=True) """ # Rotation angle theta = 1./2 * np.arctan( 2*rho*xstdev*ystdev / (xstdev**2-ystdev**2) ) # Numerically solve for taux and tauy (tau=1.D2 ==> skew=0.99) taugrid = ramp(N=10000,x0=1.E-2,x1=1.E2,log=True) Ax = np.sqrt(np.pi/2) \ * ( (np.cos(theta))**3*xskew*xstdev**3 \ + (np.sin(theta))**3*yskew*ystdev**3 ) \ / ( (np.sin(theta))**6 + (np.cos(theta))**6 ) \ * ( ( (np.cos(theta))**2 - (np.sin(theta))**2 ) \ / ( (np.cos(theta))**2*xstdev**2 \ - (np.sin(theta))**2*ystdev**2 ) )**1.5 Ay = np.sqrt(np.pi/2) \ * ( (np.cos(theta))**3*yskew*ystdev**3 \ - (np.sin(theta))**3*xskew*xstdev**3 ) \ / ( (np.cos(theta))**6 + (np.sin(theta))**6 ) \ * ( ( (np.cos(theta))**2 - (np.sin(theta))**2 ) \ / ( (np.cos(theta))**2*ystdev**2 \ - (np.sin(theta))**2*xstdev**2 ) )**1.5 taux = np.exp(np.interp(Ax,Ctau(taugrid)/(Btau(taugrid))**1.5, \ np.log(taugrid))) tauy = np.exp(np.interp(Ay,Ctau(taugrid)/(Btau(taugrid))**1.5, \ np.log(taugrid))) if (not np.isfinite(taux) or taux > 1.E2): taux = 1.E2 if (not np.isfinite(tauy) or tauy > 1.E2): tauy = 1.E2 # Rest of the parameters lambdax = np.sqrt( ( (np.cos(theta))**2*xstdev**2 \ - (np.sin(theta))**2*ystdev**2 ) \ / ( (np.cos(theta))**2 - (np.sin(theta))**2 ) / Btau(taux) ) lambday = np.sqrt( ( (np.cos(theta))**2*ystdev**2 \ - (np.sin(theta))**2*xstdev**2 ) \ / ( (np.cos(theta))**2 - (np.sin(theta))**2 ) / Btau(tauy) ) x0 = xmean - np.sqrt(2/np.pi) * ( np.cos(theta)*lambdax*(taux-1) \ - np.sin(theta)*lambday*(tauy-1) ) y0 = ymean - np.sqrt(2/np.pi) * ( np.sin(theta)*lambdax*(taux-1) \ + np.cos(theta)*lambday*(tauy-1) ) # Draw the SUE matrot = np.array([ [ np.cos(theta), -np.sin(theta) ], \ [ np.sin(theta), np.cos(theta) ] ]) xell_ax1 = np.zeros(2) yell_ax1 = np.zeros(2) xell_ax2 = np.zeros(2) yell_ax2 = np.zeros(2) for k in np.arange(4): if (k == 0): xell_sub = ramp(N=Npt,x0=-lambdax,x1=0) + x0 rx = 1-(xell_sub-x0)**2/lambdax**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = -lambday * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 1): xell_sub = ramp(N=Npt,x0=0,x1=lambdax*taux) + x0 rx = 1-(xell_sub-x0)**2/lambdax**2/taux**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = -lambday * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 2): xell_sub = (ramp(N=Npt,x0=0,x1=lambdax*taux))[::-1] + x0 rx = 1-(xell_sub-x0)**2/lambdax**2/taux**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = lambday*tauy * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan elif (k == 3): xell_sub = (ramp(N=Npt,x0=-lambdax,x1=0))[::-1] + x0 rx = 1-(xell_sub-x0)**2/lambdax**2 yell_sub = np.zeros(Npt) yell_sub[rx >= 0] = lambday*tauy * np.sqrt(rx[rx >= 0]) + y0 yell_sub[rx < 0] = np.nan # Add the limit case (half ellipse) mask = np.logical_and(np.isfinite(yell_sub),np.isfinite(xell_sub)) xell_sub = xell_sub[mask] yell_sub = yell_sub[mask] Nsub = np.count_nonzero(mask) # Rotate the ellipse for j in np.arange(Nsub): vecell = np.matmul(matrot, \ np.array([xell_sub[j]-x0,yell_sub[j]-y0])) xell_sub[j] = vecell[0] + x0 yell_sub[j] = vecell[1] + y0 if (k == 0): xell = xell_sub yell = yell_sub else: xell = np.concatenate((xell,xell_sub)) yell = np.concatenate((yell,yell_sub)) xplot = np.concatenate((xell,[xell[0]])) yplot = np.concatenate((yell,[yell[0]])) # Logs and limits if (xisln): xplot = np.exp(xplot) x0 = np.exp(x0) if (yisln): yplot = np.exp(yplot) y0 = np.exp(y0) if (xmin != None): xplot[xplot < xmin] = xmin if (x0 < xmin): x0 = xmin if (xmax != None): xplot[xplot > xmax] = xmax if (x0 > xmax): x0 = xmax if (ymin != None): yplot[yplot < ymin] = ymin if (y0 < ymin): y0 = ymin if (ymax != None): yplot[yplot > ymax] = ymax if (y0 > ymax): y0 = ymax return(xplot,yplot,x0,y0)
8b298a2d2ba04a3f1262205f19b1993a4701e279
1,853
def create_label(places, size, corners, resolution=0.50, x=(0, 90), y=(-50, 50), z=(-4.5, 5.5), scale=4, min_value=np.array([0., -50., -4.5])): """Create training Labels which satisfy the range of experiment""" x_logical = np.logical_and((places[:, 0] < x[1]), (places[:, 0] >= x[0])) y_logical = np.logical_and((places[:, 1] < y[1]), (places[:, 1] >= y[0])) z_logical = np.logical_and((places[:, 2] + size[:, 0]/2. < z[1]), (places[:, 2] + size[:, 0]/2. >= z[0])) xyz_logical = np.logical_and(x_logical, np.logical_and(y_logical, z_logical)) center = places.copy() center[:, 2] = center[:, 2] + size[:, 0] / 2. # Move bottom to center sphere_center = ((center[xyz_logical] - min_value) / (resolution * scale)).astype(np.int32) train_corners = corners[xyz_logical].copy() anchor_center = sphere_to_center(sphere_center, resolution=resolution, scale=scale, min_value=min_value) #sphere to center for index, (corner, center) in enumerate(zip(corners[xyz_logical], anchor_center)): train_corners[index] = corner - center return sphere_center, train_corners
1ae1ed49674fbcee15fb6a8201e69be2c82630f9
1,854
def usage(): """Serve the usage page.""" return render_template("meta/access.html")
909272906678c9980f379342b87c8af6a00ab89c
1,855
def GetCache(name, create=False): """Returns the cache given a cache indentfier name. Args: name: The cache name to operate on. May be prefixed by "resource://" for resource cache names or "file://" for persistent file cache names. If only the prefix is specified then the default cache name for that prefix is used. create: Creates the persistent cache if it exists if True. Raises: CacheNotFound: If the cache does not exist. Returns: The cache object. """ types = { 'file': file_cache.Cache, 'resource': resource_cache.ResourceCache, } def _OpenCache(cache_class, name): try: return cache_class(name, create=create) except cache_exceptions.Error as e: raise Error(e) if name: for cache_id, cache_class in types.iteritems(): if name.startswith(cache_id + '://'): name = name[len(cache_id) + 3:] if not name: name = None return _OpenCache(cache_class, name) return _OpenCache(resource_cache.Cache, name)
b8e1796d772506d4abb9f8261df33b4cf6777934
1,856
def rf_local_divide_int(tile_col, scalar): """Divide a Tile by an integral scalar""" return _apply_scalar_to_tile('rf_local_divide_int', tile_col, scalar)
0a8c44cafcc44d323fb931fc1b037759ad907d18
1,857
from typing import Any from typing import Dict def or_(*children: Any) -> Dict[str, Any]: """Select devices that match at least one of the given selectors. >>> or_(tag('sports'), tag('business')) {'or': [{'tag': 'sports'}, {'tag': 'business'}]} """ return {"or": [child for child in children]}
0bda8654ddc0f5dac80c8eb51b0d6d55b57c9e2a
1,858
def get_width_and_height_from_size(x): """ Obtains width and height from a int or tuple """ if isinstance(x, int): return x, x if isinstance(x, list) or isinstance(x, tuple): return x else: raise TypeError()
581c9f332613dab5de9b786ce2bac3387ee1bd3b
1,859
def remove_stopwords(lista,stopwords): """Function to remove stopwords Args: lista ([list]): list of texts stopwords ([list]): [description] Returns: [list]: List of texts without stopwords """ lista_out = list() for idx, text in enumerate(lista): text = ' '.join([word for word in text.split() if word not in stopwords]) text = text.strip() lista_out.append(text) #print("Len original: {} - Len processed stopwords: {}".format(len(lista),len(lista_out))) return lista_out
edca74bb3a041a65a628fcd3f0c71be5ad4858df
1,860
import time import io import os def Skeletonize3D(directory, crop=None, flip='y', dtype=None): """Skeletonize TrailMap results. Parameters ---------- directory : string Path to directory with segmented data. crop : dict (optional, default None) Dictionary with ImageJ-format cropping coordinates ({width:, height:, x:, y:,}) flip : string (optional, default 'y') Option to flip axis, can be any combination of 'xyz'. dtype : numpy dtype (optional, default None results in float32 images) Data type for output image. Set dtype=np.uint16 if you are going to combine with autofluo in Imaris. """ #Load Data: sample = directory.split('/')[-3] print("Started " + time.ctime()) ims = io.ImageCollection(os.path.join(directory, '*.tif'), load_func=io.imread) data = ims.concatenate() #Optionally crop: if crop: rawshape=data.shape data = data[:,crop['y']:crop['y']+crop['height'],crop['x']:crop['x']+crop['width']] print("Cropped data from " + str(rawshape) + " to " + str(data.shape) + " at " + time.ctime()) cat = np.zeros(shape=(data.shape), dtype='float32') #Create output array #Loop through thresholds 0.2 -> 0.9, extract signal, scale, and combine for i in range(2,10,1): print(str(i) + " started at " + time.ctime()) i=i/10 im = (data>i).astype('float32') skel = morphology.skeletonize_3d(im).astype('float32')*i print(str(i) + " completed at " + time.ctime()) cat = cat+skel #Optionally flip along the x, y, or z axis: if flip: if 'y' in flip: cat = np.flip(cat, axis=1) if 'x' in flip: cat = np.flip(cat, axis=2) if 'z' in flip: cat = np.flip(cat, axis=0) if dtype: cat = cat.astype(dtype) #have not tested that this results in same pixel values as changing image type in ImageJ. #Save the result image stack: try: io.imsave(os.path.join(directory, sample + '_ThresholdedSkeleton3D.tif'), cat, check_contrast=False) except PermissionError: print("You do not have write permissions for " + str(directory) + '\n' + "Saving to your home directory instead.") homedir = os.path.expanduser('~/') io.imsave(os.path.join(homedir, sample + '_ThresholdedSkeleton3D.tif'), cat, check_contrast=False) print("Finished " + sample + ' ' + time.ctime()) return cat
72eaf148cad51df01c9487b12a492a5bd2cd8661
1,861
def get_users_report(valid_users, ibmcloud_account_users): """get_users_report()""" users_report = [] valid_account_users = [] invalid_account_users = [] # use case 1: find users in account not in valid_users for account_user in ibmcloud_account_users: # check if account user is in valid_users is_valid_user=False for valid_user in valid_users: if ( account_user["email"] == valid_user["email"] ): account_user["name"] = valid_user["name"] account_user["identities"] = valid_user["identities"] if "resourceGroups" in valid_user: account_user["resourceGroups"] = valid_user["resourceGroups"] account_user["manager"] = valid_user["manager"] account_user["association"] = valid_user["association"] is_valid_user=True if is_valid_user: valid_account_users.append(account_user) else: invalid_account_users.append(account_user) users_report = { "valid_account_users" : valid_account_users, "invalid_account_users" : invalid_account_users } return users_report
a96f8835496f82d8b6f8cd4f248ed8a03676795b
1,862
def insert_bn(names): """Insert bn layer after each conv. Args: names (list): The list of layer names. Returns: list: The list of layer names with bn layers. """ names_bn = [] for name in names: names_bn.append(name) if 'conv' in name: position = name.replace('conv', '') names_bn.append(f'bn{position}') return names_bn
efe1e6a3218fb33f74c17f90a06e2d18d17442e5
1,863
def convert_format(parameters): """Converts dictionary database type format to serial transmission format""" values = parameters.copy() for key, (index, format, value) in values.items(): if type(format) == type(db.Int): values[key] = (index, 'i', value) # signed 32 bit int (arduino long) elif type(format) == type(db.Int16): values[key] = (index, 'h', value) elif type(format) == type(db.Float): values[key] = (index, 'f', value) elif type(format) == type(db.String32): values[key] = (index, 's', value) elif type(format) == type(db.StringN): values[key] = (index, 's', value) elif type(format) == type(db.Time): values[key] = (index, 'd', value) return values
fae756d54cbef6ecc7de07d123513b773ccf1433
1,864
def prepare(_config): """ Preparation of the train and validation datasets for the training and initialization of the padertorch trainer, using the configuration dict. Args: _config: Configuration dict of the experiment Returns: 3-Tuple of the prepared datasets and the trainer. trainer: padertorch trainer train_dataset: training_dataset validate_dataset: dataset for validation """ # Extraction needed strings from the config dict train_dataset_name = _config['train_dataset_name'] validate_dataset_name = _config['validate_dataset_name'] database_json = _config['database_json'] # Initialization of the trainer trainer = pt.Trainer.from_config(_config["trainer"]) db = JsonDatabase(json_path=database_json) # Preparation of the datasets train_dataset = prepare_dataset(db, train_dataset_name, _config['batch_size'], prefetch = not _config['debug']) validate_dataset = prepare_dataset(db, validate_dataset_name, _config['batch_size'], prefetch = not _config['debug']) # Print the representations of the two datasets to the console. print(repr(train_dataset_name), repr(validate_dataset_name)) return (trainer, train_dataset, validate_dataset)
eab0f93d0682dd8aae8ec8c751b9ff795c9f68e2
1,865
import warnings def getproj4(epsg): """ Get projection file (.prj) text for given epsg code from spatialreference.org. See: https://www.epsg-registry.org/ .. deprecated:: 3.2.11 This function will be removed in version 3.3.5. Use :py:class:`flopy.discretization.structuredgrid.StructuredGrid` instead. Parameters ---------- epsg : int epsg code for coordinate system Returns ------- prj : str text for a projection (*.prj) file. """ warnings.warn( "SpatialReference has been deprecated and will be removed in version " "3.3.5. Use StructuredGrid instead.", category=DeprecationWarning, ) return get_spatialreference(epsg, text="proj4")
80dccf9722f7dd45cca87dcd78775868cfe545ad
1,866
def vpn_tunnel_inside_cidr(cidr): """ Property: VpnTunnelOptionsSpecification.TunnelInsideCidr """ reserved_cidrs = [ "169.254.0.0/30", "169.254.1.0/30", "169.254.2.0/30", "169.254.3.0/30", "169.254.4.0/30", "169.254.5.0/30", "169.254.169.252/30", ] cidr_match_re = compile( r"^169\.254\.(?:25[0-5]|2[0-4]\d|[01]?\d\d?)" r"\.(?:25[0-5]|2[0-4]\d|[01]?\d\d?)\/30$" ) if cidr in reserved_cidrs: raise ValueError( 'The following CIDR blocks are reserved and cannot be used: "%s"' % (", ".join(reserved_cidrs)) ) elif not cidr_match_re.match(cidr): raise ValueError( "%s is not a valid CIDR." " A size /30 CIDR block from the 169.254.0.0/16 must be specified." % cidr ) return cidr
01807a4db2fc80cf8253b0e000e412b0dce1a528
1,867
def choose_media_type(accept, resource_types): """choose_media_type(accept, resource_types) -> resource type select a media type for the response accept is the Accept header from the request. If there is no Accept header, '*/*' is assumed. If the Accept header cannot be parsed, HTTP400BadRequest is raised. resource_types is an ordered list of available resource types, with the most desirable type first. To find a match, the types in the Accept header are ordered by q value (descending), and each is compared with the available resource types in order. The first matching media type is returned. If not match is found, HTTP406NotAcceptable is raised. """ # This function is exposed in the script dpf_choose_media_type, # so if changes are made here, that script's documentation # should be updated to reflect them. # list of (type, subtype, q) accept_types = [] for part in accept.split(','): part = part.strip() if ';' not in part: mt = part q = 1.0 else: (mt, q) = part.split(';', 1) mt = mt.strip() q = q.strip() if not q.startswith('q='): raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') try: q = float(q[2:]) except ValueError: raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') if '/' not in mt: raise HTTP400BadRequest('text/plain', 'Bad Accept header.\n') (type, subtype) = mt.split('/', 1) accept_types.append((type, subtype, q)) accept_types.sort(cmp_accept_type) accept_types.reverse() for (type, subtype, q) in accept_types: for available_type in resource_types: (a_type, a_subtype) = available_type.split('/', 1) if type != '*' and type != a_type: continue if subtype != '*' and subtype != a_subtype: continue return available_type raise HTTP406NotAcceptable()
876ad2ace8af69f5c6dc83d91d598220935987d5
1,868
import math def get_border_removal_size(image: Image, border_removal_percentage: float = .04, patch_width: int = 8): """ This function will compute the border removal size. When computing the boarder removal the patch size becomes important the output shape of the image will always be an even factor of the patch size. This allows the later computations to evenly fit the image. :param image: input image to get the dimentions :param border_removal_percentage: how much of the boarder to remove :param patch_width: the width size of the patches in pixels. :return: how many pixes to be removed around the boarder """ w, h = image.size return int(math.ceil(w * border_removal_percentage / patch_width)) * patch_width
f0f236b1d2a13058042269e0e85f52f37fb47b5e
1,869
def get_natural_num(msg): """ Get a valid natural number from the user! :param msg: message asking for a natural number :return: a positive integer converted from the user enter. """ valid_enter = False while not valid_enter: given_number = input(msg).strip() if given_number.isdigit(): num = int(given_number) valid_enter = True return num
77bed94bf6d3e5ceb56d58eaf37e3e687e3c94ba
1,870
from typing import Optional def _decode_panoptic_or_depth_map(map_path: str) -> Optional[str]: """Decodes the panoptic or depth map from encoded image file. Args: map_path: Path to the panoptic or depth map image file. Returns: Panoptic or depth map as an encoded int32 numpy array bytes or None if not existing. """ if not tf.io.gfile.exists(map_path): return None with tf.io.gfile.GFile(map_path, 'rb') as f: decoded_map = np.array(Image.open(f)).astype(np.int32) if FLAGS.panoptic_divisor > 0 and map_path.endswith(_LABEL_SUFFIX): semantic_map = decoded_map[:, :, 0] instance_map = ( decoded_map[:, :, 1] * _ENCODED_INSTANCE_LABEL_DIVISOR + decoded_map[:, :, 2]) decoded_map = semantic_map * FLAGS.panoptic_divisor + instance_map return decoded_map.tobytes()
1f3b81827ba911614d8979b187b8cde7f10078fe
1,871
def splitstr(s, l=25): """ split string with max length < l "(i/n)" """ arr = [len(x) for x in s.split()] out = [] counter = 5 tmp_out = '' for i in xrange(len(arr)): if counter + arr[i] > l: out.append(tmp_out) tmp_out = '' counter = 5 else: tmp_out += s.split()[i] + ' ' counter = len(tmp_out) + 5 return out
0d84d7bbf420d1f97993be459764c37fed50f8b3
1,872
import re def SplitRequirementSpecifier(requirement_specifier): """Splits the package name from the other components of a requirement spec. Only supports PEP 508 `name_req` requirement specifiers. Does not support requirement specifiers containing environment markers. Args: requirement_specifier: str, a PEP 508 requirement specifier that does not contain an environment marker. Returns: (string, string), a 2-tuple of the extracted package name and the tail of the requirement specifier which could contain extras and/or a version specifier. Raises: Error: No package name was found in the requirement spec. """ package = requirement_specifier.strip() tail_start_regex = r'(\[|\(|==|>=|!=|<=|<|>|~=|===)' tail_match = re.search(tail_start_regex, requirement_specifier) tail = '' if tail_match: package = requirement_specifier[:tail_match.start()].strip() tail = requirement_specifier[tail_match.start():].strip() if not package: raise Error(r'Missing package name in requirement specifier: \'{}\''.format( requirement_specifier)) return package, tail
d71eee50c162756ac7aae0bd120323d50d3ab255
1,873
def arctanh(var): """ Wrapper function for atanh """ return atanh(var)
955d09821d78703c99fc2e51f70ca0fc47b0c943
1,874
def predict_sentiment(txt: str, direc: str = 'models/sentiment/saved_models/model50') -> float: """ predicts sentiment of string only use for testing not good for large data because model is loaded each time input is a txt string optional directory change for using different models returns a value from -1 to 1 Aproaching -1 being a negative sentiment Aproaching 1 being a positive sentiment """ vals = spacy.load(direc)(txt).cats return vals["pos"] if vals["pos"]>vals["neg"] else -1*vals["neg"]
d7ff2d361792032eb097e0b0e9818da6ce3af1e5
1,875
import numpy def logfbank(signal, samplerate=16000, winlen=0.025, winstep=0.01, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97, winfunc=lambda x: numpy.ones((x,))): """Compute log Mel-filterbank energy features from an audio signal. :param signal: the audio signal from which to compute features. Should be an N*1 array :param samplerate: the samplerate of the signal we are working with. :param winlen: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds) :param winstep: the step between successive windows in seconds. Default is 0.01s (10 milliseconds) :param nfilt: the number of filters in the filterbank, default 26. :param nfft: the FFT size. Default is 512. :param lowfreq: lowest band edge of mel filters. In Hz, default is 0. :param highfreq: highest band edge of mel filters. In Hz, default is samplerate/2 :param preemph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97. :param winfunc: the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming :returns: A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. """ feat, energy = fbank(signal, samplerate, winlen, winstep, nfilt, nfft, lowfreq, highfreq, preemph, winfunc) return numpy.log(feat)
670d5faf73fcca6da249d9b5c9fb6965eafab855
1,876
def get_rmsd( pose, second_pose, overhang = 0): """ Get RMSD assuming they are both the same length! """ #id_map = get_mask_for_alignment(pose, second_pose, cdr, overhang) #rms = rms_at_corresponding_atoms_no_super(pose, second_pose, id_map) start = 1 + overhang end = pose.total_residue() - overhang l = Loop(start, end) loops = Loops() loops.push_back(l) rms = loop_rmsd(pose, second_pose, loops, False, True) return rms
80af3478fe946243cba5e7f3e45c61a8ea9af1d1
1,877
def inverse(a: int, n: int): """ calc the inverse of a in the case of module n, where a and n must be mutually prime. a * x = 1 (mod n) :param a: (int) :param n: (int) :return: (int) x """ assert greatest_common_divisor(a, n) == 1 return greatest_common_divisor_with_coefficient(a, n)[1] % n
1012c4c69b81dccd2ecfd0c5cddf7a7bd9b2c1f8
1,878
def create_app(): """Create the Flask application.""" return app
7ff5c1e66ab48a5f262beb7abfa21e28680605c9
1,879
def generate_prime_candidate(length): """ Genera un integer impar aleatorimanete param size: tamanio del numero deseado return:integer """ p = big_int(length) p |= (1 << length - 1) | 1 return p
bdae69644156191a5388b23d7cf1853b8b0273b6
1,880
def PathPrefix(vm): """Determines the prefix for a sysbench command based on the operating system. Args: vm: VM on which the sysbench command will be executed. Returns: A string representing the sysbench command prefix. """ if vm.OS_TYPE == os_types.RHEL: return INSTALL_DIR else: return '/usr/'
e0ade1847bce77f3b4efd9f801b36b219917f0b8
1,881
from typing import Union import asyncio def get_next_valid_seq_number( address: str, client: SyncClient, ledger_index: Union[str, int] = "current" ) -> int: """ Query the ledger for the next available sequence number for an account. Args: address: the account to query. client: the network client used to make network calls. ledger_index: The ledger index to use for the request. Must be an integer ledger value or "current" (the current working version), "closed" (for the closed-and-proposed version), or "validated" (the most recent version validated by consensus). The default is "current". Returns: The next valid sequence number for the address. """ return asyncio.run(main.get_next_valid_seq_number(address, client, ledger_index))
cb2a502aabc474ab79ea14bd2305dda5bfe8b479
1,882
import re def apps_list(api_filter, partial_name, **kwargs): """List all defined applications. If you give an optional command line argument, the apps are filtered by name using this string.""" params = {} if api_filter: params = {"filter": api_filter} rv = okta_manager.call_okta("/apps", REST.get, params=params) # now filter by name, if given if partial_name: matcher = re.compile(partial_name) rv = list(filter(lambda x: matcher.search(x["name"]), rv)) return rv
bafb2f1eb65e735b40613e302fcbc85507c25cb8
1,883
def jacquez(s_coords, t_coords, k, permutations=99): """ Jacquez k nearest neighbors test for spatio-temporal interaction. :cite:`Jacquez:1996` Parameters ---------- s_coords : array (n, 2), spatial coordinates. t_coords : array (n, 1), temporal coordinates. k : int the number of nearest neighbors to be searched. permutations : int, optional the number of permutations used to establish pseudo- significance (the default is 99). Returns ------- jacquez_result : dictionary contains the statistic (stat) for the test and the associated p-value (pvalue). stat : float value of the Jacquez k nearest neighbors test for the dataset. pvalue : float p-value associated with the statistic (normally distributed with k-1 df). Examples -------- >>> import numpy as np >>> import libpysal as lps >>> from pointpats import SpaceTimeEvents, jacquez Read in the example data and create an instance of SpaceTimeEvents. >>> path = lps.examples.get_path("burkitt.shp") >>> events = SpaceTimeEvents(path,'T') The Jacquez test counts the number of events that are k nearest neighbors in both time and space. The following runs the Jacquez test on the example data and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time. # turning off as kdtree changes from scipy < 0.12 return 13 >>> np.random.seed(100) >>> result = jacquez(events.space, events.t ,k=3,permutations=99) >>> print(result['stat']) 13 The significance of this can be assessed by calling the p- value from the results dictionary, as shown below. Again, no space-time interaction is observed. >>> result['pvalue'] < 0.01 False """ time = t_coords space = s_coords n = len(time) # calculate the nearest neighbors in space and time separately knnt = lps.weights.KNN.from_array(time, k) knns = lps.weights.KNN.from_array(space, k) nnt = knnt.neighbors nns = knns.neighbors knn_sum = 0 # determine which events are nearest neighbors in both space and time for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) knn_sum += count stat = knn_sum # return the results (if no inference) if not permutations: return stat # loop for generating a random distribution to assess significance dist = [] for p in range(permutations): j = 0 trand = np.random.permutation(time) knnt = lps.weights.KNN.from_array(trand, k) nnt = knnt.neighbors for i in range(n): t_neighbors = nnt[i] s_neighbors = nns[i] check = set(t_neighbors) inter = check.intersection(s_neighbors) count = len(inter) j += count dist.append(j) # establish the pseudo significance of the observed statistic distribution = np.array(dist) greater = np.ma.masked_greater_equal(distribution, stat) count = np.ma.count_masked(greater) pvalue = (count + 1.0) / (permutations + 1.0) # report the results jacquez_result = {'stat': stat, 'pvalue': pvalue} return jacquez_result
dc71d74cc0e0159e1164d659ca3f07f3b9a61dd6
1,884
def array2tensor(array, device='auto'): """Convert ndarray to tensor on ['cpu', 'gpu', 'auto'] """ assert device in ['cpu', 'gpu', 'auto'], "Invalid device" if device != 'auto': return t.tensor(array).float().to(t.device(device)) if device == 'auto': return t.tensor(array).float().to(t.device('cuda' if t.cuda.is_available() else 'cpu'))
53826ad5b19a4e030bc3e98857c9b3285094370f
1,885
def to_json(graph): """Convert this graph to a Node-Link JSON object. :param BELGraph graph: A BEL graph :return: A Node-Link JSON object representing the given graph :rtype: dict """ graph_json_dict = node_link_data(graph) # Convert annotation list definitions (which are sets) to canonicalized/sorted lists graph_json_dict['graph'][GRAPH_ANNOTATION_LIST] = { keyword: list(sorted(values)) for keyword, values in graph_json_dict['graph'][GRAPH_ANNOTATION_LIST].items() } # Convert set to list graph_json_dict['graph'][GRAPH_UNCACHED_NAMESPACES] = list(graph_json_dict['graph'][GRAPH_UNCACHED_NAMESPACES]) return graph_json_dict
325053a0838bbf1ab70a4fb61e17f93f27c80dab
1,886
def export(df: pd.DataFrame): """ From generated pandas dataframe to xml configuration :param df: computed pandas dataframe :return: """ return df
445e91a419746afef8062dcc1e6691572ba9390d
1,887
def has_same_attributes(link1, link2): """ Return True if the two links have the same attributes for our purposes, ie it is OK to merge them together into one link Parameters: link1 - Link object link2 - Link object Return value: True iff link1 and link2 have compatible attributes """ return (link1.linktype == link2.linktype and abs(link1.B - link2.B) < EPS and abs(link1.power - link2.power) < EPS and abs(link1.capacity - link2.capacity) < EPS)
e80f62d01ef18e547a2e7718ac2bb1ca3001b84f
1,888
def test_signals_creation(test_df, signal_algorithm): """Checks signal algorithms can create a signal in a Pandas dataframe.""" test_df_copy = test_df.copy() original_columns = test_df.columns # We check if the test series has the columns needed for the rule to calculate. required_columns = Api.required_inputs_for_algorithm(signal_algorithm) all_present = True for ii_requirement in required_columns: if ii_requirement not in original_columns: all_present = False # If columns are missing, we anticipate a KeyError will trigger. if not all_present: with pytest.raises(KeyError): Api.calculate_signal(test_df_copy, signal_algorithm) return True # Otherwise we expect to parse successfully. df_with_signal = Api.calculate_signal(test_df_copy, signal_algorithm) if not isinstance(df_with_signal, pd.DataFrame): print(df_with_signal) print("Type was: ", type(df_with_signal)) raise TypeError("Bad output format.") # Signal algorithms should be adding new columns with float, int or NaN data. new_columns = False for ii_column_name in df_with_signal.columns: if ii_column_name not in original_columns: new_columns = True for ii_value in df_with_signal[ii_column_name]: if not isinstance(ii_value, (float, int)): assert ii_value is "NaN" # At least one new column should have been added. Otherwise output is overriding input columns. if not new_columns: raise AssertionError( "No new columns were created by the signal function: ", df_with_signal.columns, " versus original of ", original_columns, )
5a4515092d778090a77ce5933ad2e79b4d62df36
1,889
def get_prev_day(d): """ Returns the date of the previous day. """ curr = date(*map(int, d.split('-'))) prev = curr - timedelta(days=1) return str(prev)
9195c0be4fc25a68b0bb94e953bafd407c5931a3
1,890
import types def copy_function(old_func, updated_module): """Copies a function, updating it's globals to point to updated_module.""" new_func = types.FunctionType(old_func.__code__, updated_module.__dict__, name=old_func.__name__, argdefs=old_func.__defaults__, closure=old_func.__closure__) new_func.__dict__.update(old_func.__dict__) new_func.__module__ = updated_module.__name__ return new_func
e09022f734faa1774a3ac592c0e12b0b007ae8e3
1,891
import random def get_random_color(): """ 获得一个随机的bootstrap颜色字符串标识 :return: bootstrap颜色字符串 """ color_str = [ 'primary', 'secondary', 'success', 'danger', 'warning', 'info', 'dark', ] return random.choice(color_str)
898814996aa5ada8f4000244887af382b8b9e1bc
1,892
def lstm_cell_forward(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the save gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the focus gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the focus gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilda), c stands for the memory value """ # Retrieve parameters from "parameters" Wf = parameters["Wf"] bf = parameters["bf"] Wi = parameters["Wi"] bi = parameters["bi"] Wc = parameters["Wc"] bc = parameters["bc"] Wo = parameters["Wo"] bo = parameters["bo"] Wy = parameters["Wy"] by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy n_x, m = xt.shape n_y, n_a = Wy.shape # Concatenate a_prev and xt (≈3 lines) # todo: what the fuck of the shape concat = np.zeros((n_x + n_a, m)) concat[: n_a, :] = a_prev concat[n_a:, :] = xt # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines) ft = sigmoid(np.dot(Wf, concat) + bf) it = sigmoid(np.dot(Wi, concat) + bi) cct = np.tanh(np.dot(Wc, concat) + bc) c_next = ft * c_prev + it * cct ot = sigmoid(np.dot(Wo, concat) + bo) a_next = ot * np.tanh(c_next) # Compute prediction of the LSTM cell (≈1 line) yt_pred = softmax(np.dot(Wy, a_next) + by) # store values needed for backward propagation in cache cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache
1457b7bb53f0658d7c24744c3a06d4cdcdd4096e
1,893
def logged_run(cmd, buffer): """Return exit code.""" pid = Popen(cmd, stdout=PIPE, stderr=STDOUT) pid.wait() buffer.write(pid.stdout.read()) return pid.returncode
99a1aa4f8997ef7665a8e994b3df3d4ffe8a844b
1,894
def _decode_and_format_b64_string(b64encoded_string, item_prefix=None, current_depth=1, current_index=1): """Decode string and return displayable content plus list of decoded artifacts.""" # Check if we recognize this as a known file type (_, f_type) = _is_known_b64_prefix(b64encoded_string) _debug_print_trace('Found type: ', f_type) output_files = _decode_b64_binary(b64encoded_string, f_type) if not output_files: return b64encoded_string, None if len(output_files) == 1: # get the first (only) item out_name, out_record = list(output_files.items())[0] _debug_print_trace('_decode_b64_binary returned a single record') _debug_print_trace('record:', out_record) # Build display string # If a string, include the decoded item in the output if out_record.encoding_type in ['utf-8', 'utf-16']: display_string = f'<decoded type=\'string\' name=\'{out_name}\' ' +\ f'index=\'{item_prefix}{current_index}\' ' +\ f'depth=\'{current_depth}\'>' +\ f'{out_record.decoded_string}</decoded>' return display_string, [out_record] else: # if a binary just record its presence display_string = f'<decoded value=\'binary\' name=\'{out_name}\' ' +\ f'type=\'{out_record.file_type}\' ' +\ f'index=\'{item_prefix}{current_index}\' ' +\ f'depth=\'{current_depth}\'/>' return display_string, [out_record] else: # Build header display string display_header = f'<decoded value=\'multiple binary\' type=\'multiple\' ' +\ f' index=\'{item_prefix}{current_index}\'>' child_display_strings = [] child_index = 1 child_depth = current_depth + 1 _debug_print_trace('_decode_b64_binary returned multiple records') # Build child display strings for child_name, child_rec in output_files.items(): _debug_print_trace('Child_decode: ', child_rec) child_index_string = f'{item_prefix}{current_index}.{child_index}' if child_rec.encoding_type in ['utf-8', 'utf-16']: # If a string, include the decoded item in the output child_display_string = f'<decoded type=\'string\' name=\'{child_name}\' ' +\ f'index=\'{child_index_string}\' ' +\ f'depth=\'{child_depth}\'>' +\ f'{child_rec.decoded_string}</decoded>' else: # if a binary just record its presence child_display_string = f'<decoded type=\'{child_rec.file_type}\' ' +\ f'name=\'{child_name}\' ' +\ f'index=\'{child_index_string}\' ' +\ f'depth=\'{child_depth}\'/>' child_display_strings.append(child_display_string) child_index += 1 display_string = display_header + ''.join(child_display_strings) + '</decoded>' return display_string, output_files.values()
ebf85b6b06319c6b5d8d35b5d419d3ff3b60204a
1,895
import os import shutil import time def buildDMG(): """ Create DMG containing the rootDir """ outdir = os.path.join(WORKDIR, 'diskimage') if os.path.exists(outdir): shutil.rmtree(outdir) imagepath = os.path.join(outdir, 'python-%s-macosx'%(getFullVersion(),)) if INCLUDE_TIMESTAMP: imagepath = imagepath + '%04d-%02d-%02d'%(time.localtime()[:3]) imagepath = imagepath + '.dmg' os.mkdir(outdir) runCommand("hdiutil create -volname 'Univeral MacPython %s' -srcfolder %s %s"%( getFullVersion(), shellQuote(os.path.join(WORKDIR, 'installer')), shellQuote(imagepath))) return imagepath
8acb9f52219ddc6000bb6cb38d52c04161c17fa3
1,896
import json def create_iam_role(iam_client): """Create an IAM role for the Redshift cluster to have read only access to S3. Arguments: iam_client (boto3.client) - IAM client Returns: role_arn (str) - ARN for the IAM Role """ # Create the role if it doesn't already exist. try: print('Creating IAM Role...') redshift_role = iam_client.create_role( Path="/", RoleName=IAM_ROLE_NAME, Description="Allows Redshift clusters to call AWS services", AssumeRolePolicyDocument=json.dumps( { 'Statement': [ { 'Action': 'sts:AssumeRole', 'Effect': 'Allow', 'Principal': {'Service': 'redshift.amazonaws.com'} } ], 'Version': '2012-10-17' } ) ) except Exception as e: print(e) # Attach the policy. try: iam_client.attach_role_policy( RoleName=IAM_ROLE_NAME, PolicyArn="arn:aws:iam::aws:policy/AmazonS3ReadonlyAccess" ) except Exception as e: print(e) # Return the Role ARN. role_arn = iam_client.get_role(RoleName=IAM_ROLE_NAME)['Role']['Arn'] print('Role ARN: %s' % role_arn) return role_arn
949026bae3edc1dacc5057427ecf3e21490bd9b8
1,897
import array def cone_face_to_span(F): """ Compute the span matrix F^S of the face matrix F, that is, a matrix such that {F x <= 0} if and only if {x = F^S z, z >= 0}. """ b, A = zeros((F.shape[0], 1)), -F # H-representation: A x + b >= 0 F_cdd = Matrix(hstack([b, A]), number_type=NUMBER_TYPE) F_cdd.rep_type = RepType.INEQUALITY P = Polyhedron(F_cdd) V = array(P.get_generators()) for i in xrange(V.shape[0]): if V[i, 0] != 0: # 1 = vertex, 0 = ray raise NotConeFace(F) return V[:, 1:].T
ae928e179085116fa8ac48fd01841458bdcd38ec
1,898
def neighborhood(index, npoints, maxdist=1): """ Returns the neighbourhood of the current index, = all points of the grid separated by up to *maxdist* from current point. @type index: int @type npoints: int @type maxdist int @rtype: list of int """ return [index + i for i in range(-maxdist, maxdist + 1) if i != 0 and 0 <= index + i <= npoints - 1]
98166d810daa6b99862a4c9f6d1629fdfa571bd0
1,899