content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def data_check(data): """Check the data in [0,1].""" return 0 <= float(data) <= 1
b292ef07a024e53d82e706f0d88d50d6318d6593
1,900
import re def tokenize(text): """ Tokenization function to process text data Args: text: String. disaster message. Returns: clean_tokens: list. token list from text message. """ url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' # get list of all urls using regex detected_urls = re.findall(url_regex, text) # replace each url in text string with placeholder for url in detected_urls: text = text.replace(url, "urlplaceholder") # tokenize text tokens = word_tokenize(text) # initiate lemmatizer lemmatizer = WordNetLemmatizer() # iterate through each token clean_tokens = [] for tok in tokens: # lemmatize, normalize case, and remove leading/trailing white space clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens
d5ee0929c0b6fad243b87c2b7e82270859b9b3f3
1,901
def get_symbol_historical(symbol_name): """Returns the available historical data for a symbol as a dictionary.""" # Get the data symbol_data = get_symbol_data(symbol_name) # Build the response response = symbol_data.to_dict(orient="records") return response
37578652a13ff2b705c46185aba8cd47a73dc6e0
1,902
def guesses(word): """ return all of the first and second order guesses for this word """ result = list(known(*first_order_variants(word))) result.sort() return result
9a74372e701d526d74df1df613b8648f47830202
1,903
def em(X, sf, inits, K, L, n_iter=100, n_inner_iter=50, tol=1e-5, zero_inflated=True): """ run EM algorithm on the given init centers return the clustering labels with the highest log likelihood """ # add prepare reduced data here print("start em algorithm") res = _em(X, sf, inits, K, L, n_iter, n_inner_iter, tol, zero_inflated) max_idx = np.argmax([r['llf'] for r in res]) sol = res[max_idx] em_labels = np.argmax(sol['rho'], axis=1).flatten() sol['labels'] = em_labels return sol
7a53c14caf56958fed80241bf347071b84a62280
1,904
def is_disaggregate(data, raw_fuel_sectors_enduses): """TODO: Disaggregate fuel for sector and enduses with floor area and GVA for sectors and enduses (IMPROVE) #TODO: DISAGGREGATE WITH OTHER DATA """ is_fueldata_disagg = {} national_floorarea_sector = 0 for region_name in data['lu_reg']: national_floorarea_sector += sum(data['ss_sector_floor_area_by'][region_name].values()) # Iterate regions for region_name in data['lu_reg']: is_fueldata_disagg[region_name] = {} # Iterate sector for sector in data['is_sectors']: is_fueldata_disagg[region_name][sector] = {} # Sector specifid info reg_floorarea_sector = sum(data['ss_sector_floor_area_by'][region_name].values()) # Iterate enduse for enduse in data['is_all_enduses']: national_fuel_sector_by = raw_fuel_sectors_enduses[sector][enduse] #print("national_fuel_sector_by: " + str(national_fuel_sector_by)) # ---------------------- # Disaggregating factors # TODO: IMPROVE. SHOW HOW IS DISAGGREGATED reg_disaggregation_factor = (1 / national_floorarea_sector) * reg_floorarea_sector # Disaggregated national fuel reg_fuel_sector_enduse = reg_disaggregation_factor * national_fuel_sector_by is_fueldata_disagg[region_name][sector][enduse] = reg_fuel_sector_enduse return is_fueldata_disagg
64111bb23099526aae7e2bf7fa5aefcd6225fd7c
1,905
def update_logger(evo_logger, x, fitness, memory, top_k, verbose=False): """ Helper function to keep track of top solutions. """ # Check if there are solutions better than current archive vals = jnp.hstack([evo_logger["top_values"], fitness]) params = jnp.vstack([evo_logger["top_params"], x]) concat_top = jnp.hstack([jnp.expand_dims(vals, 1), params]) sorted_top = concat_top[concat_top[:, 0].argsort()] # Importantly: Params are stored as flat vectors evo_logger["top_values"] = sorted_top[:top_k, 0] evo_logger["top_params"] = sorted_top[:top_k, 1:] evo_logger["log_top_1"].append(evo_logger["top_values"][0]) evo_logger["log_top_mean"].append(jnp.mean(evo_logger["top_values"])) evo_logger["log_top_std"].append(jnp.std(evo_logger["top_values"])) evo_logger["log_gen_1"].append(jnp.min(fitness)) evo_logger["log_gen_mean"].append(jnp.mean(fitness)) evo_logger["log_gen_std"].append(jnp.std(fitness)) evo_logger["log_sigma"].append(memory["sigma"]) evo_logger["log_gen"].append(memory["generation"]) if verbose: print(evo_logger["log_gen"][-1], evo_logger["top_values"]) return evo_logger
8efd1bbc4f0c1cde17e2ef425ae82cf3f5967df3
1,906
def ae(nb_features, input_shape, nb_levels, conv_size, nb_labels, enc_size, name='ae', prefix=None, feat_mult=1, pool_size=2, padding='same', activation='elu', use_residuals=False, nb_conv_per_level=1, batch_norm=None, enc_batch_norm=None, ae_type='conv', # 'dense', or 'conv' enc_lambda_layers=None, add_prior_layer=False, add_prior_layer_reg=0, use_logp=True, conv_dropout=0, include_mu_shift_layer=False, single_model=False, # whether to return a single model, or a tuple of models that can be stacked. final_pred_activation='softmax', do_vae=False): """ Convolutional Auto-Encoder. Optionally Variational. Optionally Dense middle layer "Mostly" in that the inner encoding can be (optionally) constructed via dense features. Parameters: do_vae (bool): whether to do a variational auto-encoder or not. enc_lambda_layers functions to try: K.softsign a = 1 longtanh = lambda x: K.tanh(x) * K.log(2 + a * abs(x)) """ # naming model_name = name # volume size data ndims = len(input_shape) - 1 if isinstance(pool_size, int): pool_size = (pool_size,) * ndims # get encoding model enc_model = conv_enc(nb_features, input_shape, nb_levels, conv_size, name=model_name, feat_mult=feat_mult, pool_size=pool_size, padding=padding, activation=activation, use_residuals=use_residuals, nb_conv_per_level=nb_conv_per_level, conv_dropout=conv_dropout, batch_norm=batch_norm) # middle AE structure if single_model: in_input_shape = None in_model = enc_model else: in_input_shape = enc_model.output.shape.as_list()[1:] in_model = None mid_ae_model = single_ae(enc_size, in_input_shape, conv_size=conv_size, name=model_name, ae_type=ae_type, input_model=in_model, batch_norm=enc_batch_norm, enc_lambda_layers=enc_lambda_layers, include_mu_shift_layer=include_mu_shift_layer, do_vae=do_vae) # decoder if single_model: in_input_shape = None in_model = mid_ae_model else: in_input_shape = mid_ae_model.output.shape.as_list()[1:] in_model = None dec_model = conv_dec(nb_features, in_input_shape, nb_levels, conv_size, nb_labels, name=model_name, feat_mult=feat_mult, pool_size=pool_size, use_skip_connections=False, padding=padding, activation=activation, use_residuals=use_residuals, final_pred_activation='linear', nb_conv_per_level=nb_conv_per_level, batch_norm=batch_norm, conv_dropout=conv_dropout, input_model=in_model) if add_prior_layer: dec_model = add_prior(dec_model, [*input_shape[:-1], nb_labels], name=model_name, prefix=model_name + '_prior', use_logp=use_logp, final_pred_activation=final_pred_activation, add_prior_layer_reg=add_prior_layer_reg) if single_model: return dec_model else: return (dec_model, mid_ae_model, enc_model)
ab5bbed13e5636ab506612776920eaffa67b8b3e
1,907
import os import shlex def read_authorized_keys(username=None): """Read public keys from specified user's authorized_keys file. args: username (str): username. returns: list: Authorised keys for the specified user. """ authorized_keys_path = '{0}/.ssh/authorized_keys'.format(os.path.expanduser('~{0}'.format(username))) rnd_chars = random_string(length=RANDOM_FILE_EXT_LENGTH) tmp_authorized_keys_path = '/tmp/authorized_keys_{0}_{1}'.format(username, rnd_chars) authorized_keys = list() copy_result = execute_command( shlex.split(str('{0} cp {1} {2}'.format(sudo_check(), authorized_keys_path, tmp_authorized_keys_path)))) result_message = copy_result[0][1].decode('UTF-8') if 'you must have a tty to run sudo' in result_message: # pragma: no cover raise OSError("/etc/sudoers is blocked sudo. Remove entry: 'Defaults requiretty'.") elif 'No such file or directory' not in result_message: execute_command(shlex.split(str('{0} chmod 755 {1}'.format(sudo_check(), tmp_authorized_keys_path)))) with open(tmp_authorized_keys_path) as keys_file: for key in keys_file: authorized_keys.append(PublicKey(raw=key)) execute_command(shlex.split(str('{0} rm {1}'.format(sudo_check(), tmp_authorized_keys_path)))) return authorized_keys
700c61571a2526d769492ade4fea4b395ff7d6ae
1,908
import os def get_fprime_version(): """ Gets the fprime version using setuptools_scm """ # First try to read the SCM version try: return get_version(root=os.sep.join([".."] * ROOT_PARENT_COUNT), relative_to=__file__) # Fallback to a specified version when SCM is unavailable except LookupError: return "1.5.4"
940ab7ffbf57d1f415b03b61b9169c1062fdb5c1
1,909
def parser_config(p): """JLS file info.""" p.add_argument('--verbose', '-v', action='store_true', help='Display verbose information.') p.add_argument('filename', help='JLS filename') return on_cmd
ea9e20fd055933d7e1b1b5f92da76875f7f318e6
1,910
def decentralized_training_strategy(communication_rounds, epoch_samples, batch_size, total_epochs): """ Split one epoch into r rounds and perform model aggregation :param communication_rounds: the communication rounds in training process :param epoch_samples: the samples for each epoch :param batch_size: the batch_size for each epoch :param total_epochs: the total epochs for training :return: batch_per_epoch, total_epochs with communication rounds r """ if communication_rounds >= 1: epoch_samples = round(epoch_samples / communication_rounds) total_epochs = round(total_epochs * communication_rounds) batch_per_epoch = round(epoch_samples / batch_size) elif communication_rounds in [0.2, 0.5]: total_epochs = round(total_epochs * communication_rounds) batch_per_epoch = round(epoch_samples / batch_size) else: raise NotImplementedError( "The communication round {} illegal, should be 0.2 or 0.5".format(communication_rounds)) return batch_per_epoch, total_epochs
3a743208af50d7c7865d5d5f86a4f58b0ba98a4d
1,911
def create_config_file_lines(): """Wrapper for creating the initial config file content as lines.""" lines = [ "[default]\n", "config_folder = ~/.zettelkasten.d\n", "\n", "def_author = Ammon, Mathias\n", "def_title = Config Parsed Test Title\n", "def_location_specifier = None\n", "\n", "location = ~/zettelkasten\n", "\n", "initial_folder_structure = \n", " lobby,\n", " %(sources_directory)s,\n", " _sources/audios,\n", " _sources/images,\n", " _sources/pdfs,\n", " _sources/videos\n", "\n", "name_sep = /\n", "\n", "required_attributes = \n", " uid,\n", " category,\n", " subcategory\n", "\n", "sources_directory = _sources\n", "\n", "styles_file = styles.cfg\n", "\n", "reserved_folder_names = \n", " lobby,\n", " %(sources_directory)s,\n", " pytest_dir,\n", " doctest_dir,\n", " .zettelkasten.d\n", "\n", "zettelkasten_bib_file = zettelkasten.bib\n", "\n", "[source_file_formats]\n", "audios = \n", " mp3,\n", " wav\n", "images = \n", " webp,\n", " jpg,\n", " jpeg,\n", " png\n", "pdfs =\n", " pdf,\n", " odt\n", "videos =\n", " mkv,\n", " webm,\n", " mp4\n", "\n", "[zettel_meta_attribute_defaults]\n", "# required for zettel adding to work \n", "category= None\n", "subcategory= None\n", "# optional\n", "author = Mathias Ammon\n", "topics =\n", "tags =\n", "doc = today\n", "\n", "[zettel_meta_attribute_labels]\n", "# required for zettel adding to work\n", "uid = #+Title:\n", "category = #+Category:\n", "subcategory = #+Subcategory:\n", "# optional\n", "author = #+Author:\n", "doc = #+DOC:\n", "dole = #+DOLE:\n", "topics = #+Topics:\n", "tags = #+Tags:\n", ] return lines
d0d1057c3f450636279a8df9d4a39977f1eeef42
1,912
def p_planes_tangent_to_cylinder(base_point, line_vect, ref_point, dist, ): """find tangent planes of a cylinder passing through a given point () .. image:: ../images/plane_tangent_to_one_cylinder.png :scale: 80 % :align: center Parameters ---------- base_point : point point M line_vect : vector direction of the existing bar's axis, direction [the other pt, base_pt], **direction very important!** ref_point : point point Q dist : float cylinder radius Returns ------- list of two [ref_point, local_y, local_x] local x = QB local_y // line_vect """ l_vect = normalize_vector(line_vect) tangent_pts = lines_tangent_to_cylinder(base_point, line_vect, ref_point, dist) if tangent_pts is None: return None base_pt, upper_tang_pt, lower_tang_pt = tangent_pts r1 = subtract_vectors(add_vectors(base_pt, upper_tang_pt), ref_point) r1 = normalize_vector(r1) r2 = subtract_vectors(add_vectors(base_pt, lower_tang_pt), ref_point) r2 = normalize_vector(r2) return [[ref_point, l_vect, r1], [ref_point, l_vect, r2]]
e8928e4314cadede97bef977c0348e32832157ad
1,913
def BOPTools_AlgoTools3D_OrientEdgeOnFace(*args): """ * Get the edge <aER> from the face <aF> that is the same as the edge <aE> :param aE: :type aE: TopoDS_Edge & :param aF: :type aF: TopoDS_Face & :param aER: :type aER: TopoDS_Edge & :rtype: void """ return _BOPTools.BOPTools_AlgoTools3D_OrientEdgeOnFace(*args)
31da8b90e4ad5838b94a0481d937104845de735c
1,914
def create_store_from_creds(access_key, secret_key, region, **kwargs): """ Creates a parameter store object from the provided credentials. Arguments: access_key {string} -- The access key for your AWS account secret_key {string} -- The secret key for you AWS account region {string} -- The region you wish to connect to Keyword Arguments (Optional): session='session' {string} -- The session token you wish to use. Returns: Object -- An AWS parameter store object. """ session = kwargs.get('session') if 'session' in kwargs else '' store = EC2ParameterStore( aws_access_key_id=access_key, aws_secret_access_key=secret_key, aws_session_token=session, #optional region_name=region ) return store
8e0ec2a6579a6013d36b6933ee922a406730ee35
1,915
import abc def are_objects_equal(object1, object2): """ compare two (collections of) arrays or other objects for equality. Ignores nan. """ if isinstance(object1, abc.Sequence): items = zip(object1, object2) elif isinstance(object1, dict): items = [(value, object2[key]) for key, value in object1.items()] else: items = [(object1, object2)] # equal_nan does not exist in array_equal in old numpy npy_major_version = tuple(int(v) for v in np.__version__.split('.')[:2]) if npy_major_version < (1, 19): fixed = [(np.nan_to_num(a1), np.nan_to_num(a2)) for a1, a2 in items] return np.all([np.all(a1 == a2) for a1, a2 in fixed]) try: return np.all( [np.array_equal(a1, a2, equal_nan=True) for a1, a2 in items] ) except TypeError: # np.array_equal fails for arrays of type `object` (e.g: strings) return np.all([a1 == a2 for a1, a2 in items])
94b4b9a9f42bc8b1dd44d5e010b422082452f649
1,916
def get_recipes_from_dict(input_dict: dict) -> dict: """Get recipes from dict Attributes: input_dict (dict): ISO_639_1 language code Returns: recipes (dict): collection of recipes for input language """ if not isinstance(input_dict, dict): raise TypeError("Input is not type dict") recipes = input_dict return recipes
e710d9629d10897d4aae7bf3d5de5dbbe18196c5
1,917
def tasks_from_wdl(wdl): """ Return a dictionary of tasks contained in a .wdl file. The values are task definitions within the wdl """ return scopes_from_wdl("task", wdl)
24d302995dcfa274b4b04868f901f832b36ec5cd
1,918
import traceback import sys def wrap_parse(content, args): """ Wraps a call to `parse` in a try/except block so that one can use a Pool and still get decent error messages. Arguments --------- content: segments are strings args: a namespace, see `parse` Returns ------- parse trees and time to parse """ if content.strip()=="" or content is None: return None try: trees = parse(content, args) if len(trees)!=0: return trees else: return None except: raise Exception(''.join(traceback.format_exception(*sys.exc_info())))
2e0a97c363be371fadbbabb22d83e1f4368205ad
1,919
async def get_category_item_route(category_id: CategoryEnum, item_id: ObjectID, db: AsyncIOMotorClient = Depends(get_database)) -> ItemInResponse: """Get the details about a particular item""" _res = await db[category_id]["data"].find_one({"_id": item_id}) if _res: return ItemInResponse(data=_res) raise HTTPException( status_code=404, detail=f'ObjectID {item_id} not found in {category_id}')
4feed87e3948994f8066268820355d9fdfe4999d
1,920
def weighted_SVD(matrix, error=None, full_matrices=False): """ Finds the most important modes of the given matrix given the weightings given by the error. matrix a horizontal rectangular matrix error weighting applied to the dimension corresponding to the rows """ if type(error) is type(None): error = np.ones(matrix.shape[0]) expanded_error = error[:,np.newaxis] to_svd = matrix / expanded_error (SVD_U, SVD_S, SVD_V_transpose) =\ la.svd(to_svd, full_matrices=full_matrices) SVD_U = SVD_U * expanded_error return SVD_U, SVD_S, SVD_V_transpose.T
5ca0f54af765f0694fb572ee3b82f4d59642bb06
1,921
def ingredients(): """Route to list all ingredients currently in the database. """ query = request.args.get("q") ingredients = db.get_ingredient_subset_from_db(query) return jsonify(ingredients)
376bcb8e16c0379676f9748f4a2858ea39ca33ab
1,922
def read_h5_particles(particles_file, refpart, real_particles, bucket_length, comm, verbose): """Read an array of particles from an HDF-5 file""" four_momentum = refpart.get_four_momentum() pmass = four_momentum.get_mass() E_0 = four_momentum.get_total_energy() p0c = four_momentum.get_momentum() myrank = comm.get_rank() mpisize = comm.get_size() if myrank==0 and verbose: print("Loading particles from h5 file: ", particles_file) if myrank == 0: #h5 = tables.open_file(particles_file) h5 = h5py.File(particles_file) # use explicit int conversion otherwise there seems to # be a typepython->C++ type mismatch of numpy.int64->int #num_total_particles = int(h5.root.particles.shape[0]) num_total_particles = int(h5['particles'].shape[0]) if verbose: print("Total of ", num_total_particles, " particles from file") # broadcast num particles to all nodes MPI.COMM_WORLD.bcast(num_total_particles, root=0) else: num_total_particles = None num_total_particles = MPI.COMM_WORLD.bcast(num_total_particles, root=0) if myrank == 0: particles = h5['particles'] # make sure the data has the correct shape, either [n,6] without # particles IDs or [n,7] with particle IDs. if (particles.shape[1] != 7): raise RuntimeError, "input data shape %shas incorrect number of particle coordinates"%repr(particles.shape) #Note: Synergia bunch constructor updated - commit 077b99d7 - 11/17/2016 #Using old constructor throws an ArgumentError of a non-standard type. # Using a try and except to handle both instances. try: # try the original constructor bunch = synergia.bunch.Bunch( refpart, num_total_particles, real_particles, comm, bucket_length) except Exception, e: #look to see if it's an ArgumentError by evaluating the traceback if (not str(e).startswith("Python argument types in")): raise else: # use the new constructor if verbose: print("Using updated bunch constructor") bunch = synergia.bunch.Bunch( refpart, num_total_particles, real_particles, comm) # now set the new parameter 'z_period_length' if bucket_length is not None: bunch.set_z_period_length(bucket_length) else: bucket_length = 1. #fix this quantity local_num = bunch.get_local_num() local_particles = bunch.get_local_particles() # Each processor will have a possibly different number of local particles. # rank 0 has to find out how many each of them has and distribute them n_particles_by_proc = MPI.COMM_WORLD.gather(local_num, 0) if myrank == 0: # copy in my particles this_rank_start = 0 local_particles[:,:] = particles[0:local_num, :] this_rank_start += local_num # send particles out to other ranks for r in range(1, mpisize): this_rank_end = this_rank_start+n_particles_by_proc[r] MPI.COMM_WORLD.send(obj=particles[this_rank_start:this_rank_end, :], dest=r) this_rank_start += n_particles_by_proc[r] else: # I'm not rank 0. Receive my particles lp = MPI.COMM_WORLD.recv(source=0) local_particles[:,:] = lp[:,:] return bunch
caaeb89920b3cc9e0b263c9b1fea5fc1615ad8b3
1,923
import logging def readAndMapFile(path): """ Main file breaker - this takes a given file and breaks it into arbitrary fragments, returning and array of fragments. For simplicity, this is breaking on newline characters to start with. May have to be altered to work with puncuation and/or special characters as needed. """ splitLines = [] def mapper(line): strippedLine = line.strip() if (len(strippedLine) > 0): splitLines.append(strippedLine) with open(path, "r", encoding=FILE_ENCODING) as f: content = f.read() items = content.split("\n") for i in items: logging.info("n-gram length = {}".format(len(i))) mapper(i) logging.info("Read {} lines of text from {}".format(len(splitLines), path)) return splitLines
4a542d1a08fcd88a1660de360c15d87949eddf11
1,924
def fetch_git_logs(repo, from_date, to_date, args): # pragma: no cover """Fetch all logs from Gitiles for the given date range. Gitiles does not natively support time ranges, so we just fetch everything until the range is covered. Assume that logs are ordered in reverse chronological order. """ cursor = '' commit_date = to_date data = [] while cursor is not None: page = fetch_git_page(repo, cursor) logs = page.get('log', []) cursor = page.get('next') for log in logs: committer = log.get('committer', {}) commit_date = date_from_git(committer.get('time')) if not commit_date: continue if commit_date > to_date: continue if commit_date < from_date: break files = set() for entry in log.get('tree_diff', []): files.add(entry['old_path']) files.add(entry['new_path']) if args.path_filter_include: if not any(matches_path_filter(p, args.path_filter_include) for p in files): continue if args.path_filter_exclude: if any(matches_path_filter(p, args.path_filter_exclude) for p in files): continue data.append({ 'author': log.get('author', {}).get('email'), 'date': commit_date, 'commit-bot': bool('commit-bot' in committer.get('email', '')), 'revision': log.get('commit'), }) if commit_date < from_date: break return data
1164b373e9b8f7186165712f8ac9e5e3d1a1f10f
1,925
import torch def _gen_bfp_op(op, name, bfp_args): """ Do the 'sandwich' With an original op: out = op(x, y) grad_x, grad_y = op_grad(grad_out) To the following: x_, y_ = input_op(x, y) Where input_op(x, y) -> bfp(x), bfp(y) and input_op_grad(grad_x, grad_y) -> bfp(grad_x), bfp(grad_y) out_ = op(x_, y_) out = output_op(out) Where output_op(out) -> bfp(out) and output_op_grad(grad_out) -> bfp(grad_out) This way we garantee that everything in and out of the forward and backward operations is properly converted to bfp """ name = _get_op_name(name, **bfp_args) class NewOpIn(torch.autograd.Function): @staticmethod def forward(ctx, x, w): return (float_to_bfp_batched(x, backward=False, **bfp_args), w) @staticmethod def backward(ctx, grad_x, grad_w): return (grad_x, grad_w) NewOpIn.__name__ = name + '_In' new_op_in = NewOpIn.apply class NewOpOut(torch.autograd.Function): @staticmethod def forward(ctx, op_out): return op_out @staticmethod def backward(ctx, op_out_grad): return float_to_bfp_batched(op_out_grad, backward=True, **bfp_args) NewOpOut.__name__ = name + '_Out' new_op_out = NewOpOut.apply def new_op(x, w, *args, **kwargs): x, w = new_op_in(x, w) out = op(x, w, *args, **kwargs) return new_op_out(out) return new_op
d430bd9d090d0a47fa4d6a8c173c77b08e2fdb66
1,926
def angleaxis_to_rotation_matrix(aa): """Converts the 3 element angle axis representation to a 3x3 rotation matrix aa: numpy.ndarray with 1 dimension and 3 elements Returns a 3x3 numpy.ndarray """ angle = np.sqrt(aa.dot(aa)) if angle > 1e-6: c = np.cos(angle); s = np.sin(angle); u = np.array([aa[0]/angle, aa[1]/angle, aa[2]/angle]); R = np.empty((3,3)) R[0,0] = c+u[0]*u[0]*(1-c); R[0,1] = u[0]*u[1]*(1-c)-u[2]*s; R[0,2] = u[0]*u[2]*(1-c)+u[1]*s; R[1,0] = u[1]*u[0]*(1-c)+u[2]*s; R[1,1] = c+u[1]*u[1]*(1-c); R[1,2] = u[1]*u[2]*(1-c)-u[0]*s; R[2,0] = u[2]*u[0]*(1-c)-u[1]*s; R[2,1] = u[2]*u[1]*(1-c)+u[0]*s; R[2,2] = c+u[2]*u[2]*(1-c); else: R = np.eye(3) return R
57d849f137684824aa23d393802dc247df987b59
1,927
def sendOrderFAK(self, orderType, price, volume, symbol, exchange, stop=False): """发送委托""" if self.trading: # 如果stop为True,则意味着发本地停止单 req = {} req['sid'] = self.sid if orderType == CTAORDER_BUY: req['direction'] = '0' req['offset'] = '0' elif orderType == CTAORDER_SELL: req['direction'] = '1' req['offset'] = '1' elif orderType == CTAORDER_SELL_TODAY: req['direction'] = '1' req['offset'] = '3' elif orderType == CTAORDER_SHORT: req['direction'] = '1' req['offset'] = '0' elif orderType == CTAORDER_COVER: req['direction'] = '0' req['offset'] = '1' elif orderType == CTAORDER_COVER_TODAY: req['direction'] = '0' req['offset'] = '3' req['symbol'] = symbol req['volume'] = volume req['price'] = price req['hedgeflag'] = '1' req['ordertype'] = '1' req['exchange'] = exchange vtOrderID = ctaEngine.sendOrder(req) return vtOrderID else: return None # ----------------------------------------------------------------------
5b72ab3cdfa0b4412df2861d1e23a4a55f1d7206
1,928
import itertools def unique(lst): """ :param lst: a list of lists :return: a unique list of items appearing in those lists """ indices = sorted(list(range(len(lst))), key=lst.__getitem__) indices = set(next(it) for k, it in itertools.groupby(indices, key=lst.__getitem__)) return [x for i, x in enumerate(lst) if i in indices]
0848d693681ff0f8bdbc0d0436b3d4450eee781e
1,929
def max_frequency(sig, FS): """Compute max frequency along the specified axes. Parameters ---------- sig: ndarray input from which max frequency is computed. FS: int sampling frequency Returns ------- f_max: int 0.95 of max_frequency using cumsum. """ f, fs = plotfft(sig, FS, doplot=False) t = np.cumsum(fs) try: ind_mag = np.where(t > t[-1]*0.95)[0][0] except: ind_mag = np.argmax(t) f_max = f[ind_mag] return f_max
19321fb47d47b99138e1d1551f3728df4c2b7370
1,930
def split(text): """Turns the mobypron.unc file into a dictionary""" map_word_moby = {} try: lines = text.split("\n") for line in lines: (word, moby) = line.split(" ", 1) map_word_moby[word] = moby except IOError as error: print(f"Failed due to IOError: {error}") return map_word_moby
ba051724f0399e918949c3e8b7fb010e2d87c9f9
1,931
def report(key_name=None, priority=-1, **formatters): """ Use this decorator to indicate what returns to include in the report and how to format it """ def tag_with_report_meta_data(cls): # guard: prevent bad coding by catching bad return key if key_name and key_name not in cls.return_keys: raise Exception("Task %s does not specify %s using the @returns decorator. " "It cannot be used in @report" % (cls.name, key_name)) report_entry = { "key_name": key_name, 'priority': priority, 'formatters': formatters, } if not hasattr(cls, 'report_meta'): cls.report_meta = [] cls.report_meta.append(report_entry) return cls return tag_with_report_meta_data
3830135de40bdc2a25bd3c6b6cecc194c6dbebac
1,932
import scipy def calc_momentum_def(x_loc, X, Y, U): """ calc_momentum_def() : Calculates the integral momentum deficit of scalar field U stored at \ locations X,Y on a vertical line that runs nearest to x_loc. """ U_line, x_line, x_idx_line = get_line_quantity(x_loc, X, Y, U) y_line = Y[:,x_idx_line] return scipy.integrate.trapz(U_line*(1-U_line), y_line)
7173450ebd779c07a80cef2deb37954ddb7509be
1,933
def display_unit_title(unit, app_context): """Prepare an internationalized display for the unit title.""" course_properties = app_context.get_environ() template = get_unit_title_template(app_context) return template % {'index': unit.index, 'title': unit.title}
9d8ffbf0672388bd890aaabb8e5fbdb5e193d3d2
1,934
def load_user(user_id): """Load the user object from the user ID stored in the session""" return User.objects(pk=user_id).first()
96df8d5e21f380369ae0c6ccc404a4f7880bf000
1,935
def get_complex_replay_list(): """ For full replays that have crashed or failed to be converted :return: """ return [ 'https://cdn.discordapp.com/attachments/493849514680254468/496153554977816576/BOTS_JOINING_AND_LEAVING.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496153569981104129/BOTS_NO_POSITION.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496153605074845734/ZEROED_STATS.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/496180938968137749/FAKE_BOTS_SkyBot.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/497149910999891969/NEGATIVE_WASTED_COLLECTION.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/497191273619259393/WASTED_BOOST_WHILE_SUPER_SONIC.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/501630263881760798/OCE_RLCS_7_CARS.replay', 'https://cdn.discordapp.com/attachments/493849514680254468/561300088400379905/crossplatform_party.replay' ]
ef5a75a848289ad9c129c2b73a6d6845dcd07cfe
1,936
import json def parse_registry(): """ Parses the provided registry.dat file and returns a dictionary of chunk file names and hashes. (The registry file is just a json dictionary containing a list of file names and hashes.) """ registry = request.values.get("registry", None) if registry is None: return None try: ret = json.loads(registry) except ValueError: return abort(400) if not isinstance(ret, dict): return abort(400) return ret
71d4cd0f2b9fb33b92861feb9ea882fc32ec7234
1,937
import math def get_cosine_with_hard_restarts_schedule_with_warmup(optim: Optimizer, num_warmup_step: float, num_training_step: int, num_cycles: float = 1., last_epoch: int = -1): """ get a scheduler with a linear warmup between ``[0, num_warmup_step)`` and then decreases it following a cosine function with several hard restarts. """ def lr_lambda(current_step): if current_step < num_warmup_step: return float(current_step) / float(max(1.0, num_warmup_step)) progress = float(current_step - num_warmup_step) / float(max(1, num_training_step - num_warmup_step)) if progress >= 1.0: return 0. return max(0., .5 * (1. + math.cos(math.pi * ((float(num_cycles) * progress) % 1.)))) return LambdaLR(optim, lr_lambda, last_epoch)
5327cb688885c8ecc271156364a06bffedd97775
1,938
import typing def home(): """ Render Homepage -------------------------------------------------------------- This site should be cached, because it is the main entry point for many users. """ bestseller: typing.List[Device] = get_bestsellers() specialist_manufacturers = Manufacturer.query.filter( (Manufacturer.name == "Samsung") | (Manufacturer.name == "Huawei") ).all() return render_template("shop/home.html", bestseller=bestseller, specialist_manufacturers=specialist_manufacturers)
ca452264e8a10af83e0cc7b5df592a9f618085ad
1,939
def reject_call(): """Ends the call when a user does not want to talk to the caller""" resp = twilio.twiml.Response() resp.say("I'm sorry, Mr. Baker doesn't want to talk to you. Goodbye scum.", voice='woman', language='en-GB') resp.hangup() return str(resp)
743e58b230a3a63df4c3e882139755b8d2c4bc55
1,940
def table_prep(data, columns=''): """ Data processor for table() function. You can call it separately as well and in return get a non-prettyfied summary table. Unless columns are defined, the three first columns are chosen by default. SYNTAX EXAMPLE: df['quality_score','influence_score','reach_score'] """ if data.shape[1] != 3: if len(columns) != 3: if data.shape[1] > 3: print("showing first three columns because no columns were \ specific / data had more than 3 columns") data = pd.DataFrame(data[data.columns[0:3]]) if data.shape[1] < 3: print("You need at least 3 columns of data for this table") quit() if len(columns) == 3: data = data[columns] desc = pd.DataFrame({'sum': data.sum().astype('int'), 'median': data.median(), 'mean': data.mean(), 'std': data.std()}) desc = desc.round(decimals=2) return desc
a9d3d75d2ac32ddf5ae4d5a17a10974b61c139ee
1,941
def lerp(a,b,t): """ Linear interpolation between from @a to @b as @t goes between 0 an 1. """ return (1-t)*a + t*b
12cb8690ba5e5f2a4c08c1cd29d3497513b63438
1,942
def convert_to_legacy_v3( game_tick_packet: game_data_struct.GameTickPacket, field_info_packet: game_data_struct.FieldInfoPacket = None): """ Returns a legacy packet from v3 :param game_tick_packet a game tick packet in the v4 struct format. :param field_info_packet a field info packet in the v4 struct format. Optional. If this is not supplied, none of the boost locations will be filled in. """ legacy_packet = GameTickPacket() legacy_packet.numBoosts = game_tick_packet.num_boost legacy_packet.numCars = game_tick_packet.num_cars for i in range(game_tick_packet.num_cars): convert_player_info(legacy_packet.gamecars[i], game_tick_packet.game_cars[i]) for i in range(game_tick_packet.num_boost): convert_boost_info(legacy_packet.gameBoosts[i], game_tick_packet.game_boosts[i]) if field_info_packet is not None: convert_vector(legacy_packet.gameBoosts[i].Location, field_info_packet.boost_pads[i].location) convert_ball_info(legacy_packet.gameball, game_tick_packet.game_ball) convert_game_info(legacy_packet.gameInfo, game_tick_packet.game_info) return legacy_packet
3e00e165233806957a010871c9218b1c02950063
1,943
import logging def _load_audio(audio_path, sample_rate): """Load audio file.""" global counter global label_names global start global end logging.info("Loading '%s'.", audio_path) try: lbl1=Alphabet[audio_path[-6]] lbl2 = Alphabet[audio_path[-5]] except: lbl1=1 + counter lbl2=2 + counter label_names=np.array([[lbl1,lbl2]]).astype(np.float32) counter = counter + 1 print('label names') print(audio_path) #print(audio_path[-6]+audio_path[-5]) print(label_names) beam.metrics.Metrics.counter('prepare-tfrecord', 'load-audio').inc() with tf.io.gfile.GFile(audio_path, 'rb') as f: audio_segment = ( pydub.AudioSegment.from_file(f) .set_channels(1).set_frame_rate(sample_rate)) audio = np.array(audio_segment.get_array_of_samples()).astype(np.float32) audio=audio[start:end] audio /= 2 ** (8 * audio_segment.sample_width) with tf.io.gfile.GFile(str(audio_path.replace("audio","audio_2")), 'rb') as sd: audio_segment_2 = ( pydub.AudioSegment.from_file(sd) .set_channels(1).set_frame_rate(sample_rate)) audio_2 = np.array(audio_segment_2.get_array_of_samples()).astype(np.float32) audio_2=audio_2[start:end] # Convert from int to float representation. audio_2 /= 2**(8 * audio_segment_2.sample_width) print('I am alive!') start = start + 64000 end = end + 64000 #print(audio) return {'audio': audio,'audio_2': audio_2}
5e8112c79164c800965f137c83ceb720aab17bdf
1,944
def generate_annotation_dict(annotation_file): """ Creates a dictionary where the key is a file name and the value is a list containing the - start time - end time - bird class. for each annotation in that file. """ annotation_dict = dict() for line in open(annotation_file): file_name, start_time, end_time, bird_class = line.strip().split('\t') if file_name not in annotation_dict: annotation_dict[file_name] = list() annotation_dict[file_name].append([start_time, end_time, bird_class]) return annotation_dict
f40f210075e65f3dbe68bb8a594deb060a23ad8b
1,945
def ishom(T, check=False, tol=100): """ Test if matrix belongs to SE(3) :param T: SE(3) matrix to test :type T: numpy(4,4) :param check: check validity of rotation submatrix :type check: bool :return: whether matrix is an SE(3) homogeneous transformation matrix :rtype: bool - ``ishom(T)`` is True if the argument ``T`` is of dimension 4x4 - ``ishom(T, check=True)`` as above, but also checks orthogonality of the rotation sub-matrix and validitity of the bottom row. .. runblock:: pycon >>> from spatialmath.base import * >>> import numpy as np >>> T = np.array([[1, 0, 0, 3], [0, 1, 0, 4], [0, 0, 1, 5], [0, 0, 0, 1]]) >>> ishom(T) >>> T = np.array([[1, 1, 0, 3], [0, 1, 0, 4], [0, 0, 1, 5], [0, 0, 0, 1]]) # invalid SE(3) >>> ishom(T) # a quick check says it is an SE(3) >>> ishom(T, check=True) # but if we check more carefully... >>> R = np.array([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) >>> ishom(R) :seealso: :func:`~spatialmath.base.transformsNd.isR`, :func:`~isrot`, :func:`~spatialmath.base.transforms2d.ishom2` """ return ( isinstance(T, np.ndarray) and T.shape == (4, 4) and ( not check or ( base.isR(T[:3, :3], tol=tol) and np.all(T[3, :] == np.array([0, 0, 0, 1])) ) ) )
b4a0467d22940889e3071bf07d4a093d567409f3
1,946
def _get_stp_data(step_order=STEP_ORDER, n=N_PER_STEP): """Returns np.array of step-type enums data for sample data. Parameters ---------- step_order : list of (int, char) List of (Cycle number, step type code) for steps in sample procedure. n : int Number of datapoints per step. Returns ------- stp_data : np.array(int) """ return np.hstack([_get_step_stp_idx_data(step_code, n=n) for _, step_code in step_order])
d96a2604ac67e1a84ead39e0d2d39a5c6183a5cd
1,947
def actor_discrete_loss(actions, advantages, logits): """ Adapted from: http://inoryy.com/post/tensorflow2-deep-reinforcement-learning/ """ # sparse categorical CE loss obj that supports sample_weight arg on call() # from_logits argument ensures transformation into normalized probabilities weighted_sparse_ce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # policy loss is defined by policy gradients, weighted by advantages # note: we only calculate the loss on the actions we've actually taken actions = tf.cast(actions, tf.int32) policy_loss = weighted_sparse_ce(actions, logits, sample_weight=advantages) # entropy loss can be calculated via CE over itself # TODO: use this # entropy_loss = tf.keras.losses.categorical_crossentropy(logits, logits, from_logits=True) # here signs are flipped because optimizer minimizes # return policy_loss - self.params['entropy']*entropy_loss return policy_loss
a1a4cf0967d432655cc0788ad2c20bb0ca861d4f
1,948
from typing import Union from typing import List def fuse_stride_arrays(dims: Union[List[int], np.ndarray], strides: Union[List[int], np.ndarray]) -> np.ndarray: """ Compute linear positions of tensor elements of a tensor with dimensions `dims` according to `strides`. Args: dims: An np.ndarray of (original) tensor dimensions. strides: An np.ndarray of (possibly permuted) strides. Returns: np.ndarray: Linear positions of tensor elements according to `strides`. """ return fuse_ndarrays([ np.arange(0, strides[n] * dims[n], strides[n], dtype=SIZE_T) for n in range(len(dims)) ])
06185cb0bcfccd30e7b006fa8fe4e28a6f5ae7f3
1,949
def extract_jasmine_summary(line): """ Example SUCCESS karma summary line: PhantomJS 2.1.1 (Linux 0.0.0): Executed 1 of 1 SUCCESS (0.205 secs / 0.001 secs) Exmaple FAIL karma summary line: PhantomJS 2.1.1 (Linux 0.0.0): Executed 1 of 1 (1 FAILED) ERROR (0.21 secs / 0.001 secs) """ # get totals totals = line.split(' Executed ')[1].split(' ') executed_tests, total_tests = int(totals[0]), int(totals[2]) # get failed if 'SUCCESS' in line: failed_tests = 0 else: failed_tests = int(totals[3][1:]) return { 'total_tests': total_tests, 'executed_tests': executed_tests, 'failed_tests': failed_tests, 'passed_tests': executed_tests - failed_tests }
f795ff015555cc3a2bd2d27527ae505a6dde9231
1,950
import argparse import inspect import re import os def main( argv ): """ Script execution entry point @param argv Arguments passed to the script @return Exit code (0 = success) """ #------------------------------------------------------------------------- # BEGIN: Per-script Configuration #------------------------------------------------------------------------- # set a pattern used to match desired function names # example of only allowing certain prefixes: # guard_pattern = r'^demo_' guard_pattern = None # set up auto type-conversions for functions that expect parameters to # be of a specified type # note: the parameter list must be complete for any specified function. # the default parser will pass all parameters as strings if the # function is not listed here. parameter_types = { 'fun1' : { 'x' : int } } # set up auto parameter documentation here # note: the parameter list must be complete for any specified function. parameter_docs = { 'fun0' : { 'a' : 'Name', 'b' : 'Desired item', 'c' : 'Number of desired items', 'd' : 'The greeting' } } #------------------------------------------------------------------------- # END: Per-script Configuration #------------------------------------------------------------------------- # imports when using this as a script # note: it's probably better to put these at the top of the file, but # we're assuming the application may not rely on these modules. # get the name of the current function (most likely "main") current_name = inspect.currentframe().f_code.co_name # create a list of functions used to test each function for exposure tests = [ # only expose functions inspect.isfunction, # do not expose conventionally "private" functions lambda f: f.__name__[ : 1 ] != '_', # do not expose the current function lambda f: f.__name__ != current_name ] # if there's a guard pattern, set up a regular expression to test it if guard_pattern is not None: tests.append( lambda f: re.match( guard_pattern, f.__name__ ) is not None ) # create a filter function (in a closure) to omit unwanted functions def create_predicate( tests ): def predicate( function ): for test in tests: if test( function ) == False: return False return True return predicate test = create_predicate( tests ) # get a reference to the current module module = sys.modules[ __name__ ] # construct a list of functions from the module's dictionary functions = [ m[ 1 ] for m in inspect.getmembers( module, test ) ] # standard (improved) help argument specification helpargs = [ '-h', '--help' ] helpkwargs = { 'default' : argparse.SUPPRESS, 'help' : 'Display this help message and exit.', 'action' : 'help' } # create and configure an argument parser parser = argparse.ArgumentParser( description = 'Module Shell Script Example', add_help = False ) parser.add_argument( *helpargs, **helpkwargs ) parser.add_argument( '-t', '--test', default = argparse.SUPPRESS, help = 'Execute script self-test.', action = 'store_true' ) parser.add_argument( '-v', '--version', default = argparse.SUPPRESS, help = 'Display script version and exit.', action = 'version', version = __version__ ) # set up sub-command parsers subparsers = parser.add_subparsers( title = 'Functions', help = 'The following functions are available.' ) # add a sub-command parser for each function for function in functions: # shortcut for the function name name = function.__name__ # use the function's docstring for helpful information docstring = inspect.getdoc( function ) # create a sub-parser for this function subparser = subparsers.add_parser( name, description = docstring, help = docstring, add_help = False, formatter_class = argparse.ArgumentDefaultsHelpFormatter ) # standard help switch subparser.add_argument( *helpargs, **helpkwargs ) # argument specification of function fun_args = inspect.getargspec( function ) num_args = len( fun_args.args ) # check for argument defaults if fun_args.defaults is not None: defaults = list( fun_args.defaults ) else: defaults = [] # load arguments into this sub-parser for arg in fun_args.args: # keyword arguments used to create the sub-parser argument kwargs = {} # check for default values specified in the function if num_args == len( defaults ): kwargs[ 'nargs' ] = '?' kwargs[ 'default' ] = defaults.pop( 0 ) # check for specified parameter types for this function if name in parameter_types: kwargs[ 'type' ] = parameter_types[ name ][ arg ] # check for specified parameter documentation for this function if name in parameter_docs: kwargs[ 'help' ] = parameter_docs[ name ][ arg ] # add the specified argument to the sub-parser subparser.add_argument( arg, **kwargs ) # decrement number of remaining arguments to add num_args -= 1 # set the function to be called when this sub-command is issued subparser.set_defaults( _call = function ) # parse the arguments args = parser.parse_args( argv[ 1 : ] ) # check for self-test request if hasattr( args, 'test' ) and args.test == True: result = 0 script = os.path.basename( __file__ ) tests = [ ( script, 'fun0', 'Bob', 'waffles' ), ( script, 'fun0', 'Bob', 'waffles', 3 ), ( script, 'fun0', 'Bob', 'waffles', 4, 'Greetings' ) ] for test in tests: try: result = main( *test ) except: print 'CAUGHT: {}'.format( sys.exc_info()[0] ) raise else: if result != 0: return result return result # load arguments into a new dict instance params = dict( vars( args ) ) # scrub things that aren't arguments to the requested function # note: this means the function can't have parameters that begin with "_" for key in params.keys(): if key[ : 1 ] == '_': del params[ key ] # call the function that was set for the specified sub-command result = args._call( **params ) # check return for something non-shell-like if type( result ) is not int: print result return 0 # return result return result
3f23b4f4ec29ed563c08432b30bf963739d4f789
1,951
from xmodule.modulestore.store_utilities import DETACHED_XBLOCK_TYPES def serialize_item(item): """ Args: item: an XBlock Returns: fields: a dictionary of an XBlock's field names and values block_type: the name of the XBlock's type (i.e. 'course' or 'problem') """ # convert all fields to a dict and filter out parent and children field fields = { field: field_value.read_from(item) for (field, field_value) in item.fields.items() if field not in ['parent', 'children'] } course_key = item.scope_ids.usage_id.course_key block_type = item.scope_ids.block_type # set or reset some defaults fields['edited_on'] = str(getattr(item, 'edited_on', '')) fields['display_name'] = item.display_name_with_default fields['org'] = course_key.org fields['course'] = course_key.course fields['run'] = course_key.run fields['course_key'] = str(course_key) fields['location'] = str(item.location) fields['block_type'] = block_type fields['detached'] = block_type in DETACHED_XBLOCK_TYPES if block_type == 'course': # prune the checklists field if 'checklists' in fields: del fields['checklists'] # record the time this command was run fields['time_last_dumped_to_neo4j'] = str(timezone.now()) return fields, block_type
426e5e83644ca2f1a81491e7e0a65a67cca26f15
1,952
def gen_outfile_name(args): """Generate a name for the output file based on the input args. Parameters ---------- args : argparse argparse object to print """ return args.outfile + gen_identifier(args)
6a91c26de3ae3ec39a2095434ccc18feb9fed699
1,953
def check_vg_tags(game_id): """Returns a user's tags.""" if game_id: user_id = session.get('user_id') user_query = VgTag.query.join(Tag).filter(Tag.user_id == user_id) # Only display user's tags for a specific game. vg_tags = user_query.filter(VgTag.game_id == game_id).all() return vg_tags else: return None
1eed3e9a58a21a79ae5502a67bde0c409af71785
1,954
def load_fits(path): """ load the fits file Parameters ---------- path: string, location of the fits file Output ------ data: numpy array, of stokes images in (row, col, wv, pol) header: hdul header object, header of the fits file """ hdul_tmp = fits.open(f'{path}') data = np.asarray(hdul_tmp[0].data, dtype = np.float32) header = hdul_tmp[0].header return data, header
f0040e9ef3c8b2e7e4136f0ef7a7a2f9370a3653
1,955
def get_image_path(cfg, metadata, prefix='diag', suffix='image', metadata_id_list='default',): """ Produce a path to the final location of the image. The cfg is the opened global config, metadata is the metadata dictionairy (for the individual dataset file) """ ##### if metadata_id_list == 'default': metadata_id_list = ['project', 'dataset', 'mip', 'exp', 'ensemble', 'field', 'short_name', 'preprocessor', 'diagnostic', 'start_year', 'end_year', ] path = folder(cfg['plot_dir']) if prefix: path += prefix + '_' # Check that the keys are in the dict. intersection = [va for va in metadata_id_list if va in metadata.keys()] path += '_'.join([str(metadata[b]) for b in intersection]) if suffix: path += '_' + suffix image_extention = get_image_format(cfg) if path.find(image_extention) == -1: path += image_extention logger.info("Image path will be: %s", path) return path
0c725311db7b3290923f6206cb2bb4d382644e12
1,956
def ProjectNameToBinding(project_name, tag_value, location=None): """Returns the binding name given a project name and tag value. Requires binding list permission. Args: project_name: project name provided, fully qualified resource name tag_value: tag value to match the binding name to location: region or zone Returns: binding_name Raises: InvalidInputError: project not found """ service = ServiceFns['tagBindings']() with endpoints.CrmEndpointOverrides(location): req = ListResourceFns['tagBindings'](parent=project_name) response = service.List(req) for bn in response.tagBindings: if bn.tagValue == tag_value: return bn.name raise InvalidInputError( 'Binding not found for parent [{}], tagValue [{}]'.format( project_name, tag_value))
00966f8b74378b905fe5b3c4e5a6716a5d4f71bf
1,957
def degrees_of_freedom(s1, s2, n1, n2): """ Compute the number of degrees of freedom using the Satterhwaite Formula @param s1 The unbiased sample variance of the first sample @param s2 The unbiased sample variance of the second sample @param n1 Thu number of observations in the first sample @param n2 The number of observations in the second sample """ numerator = (s1**2/n1 + s2**2/n2)**2 denominator = ((s1**2/n1)**2)/(n1-1) + ((s2**2/n2)**2)/(n2-1) degrees_of_freedom = numerator/denominator return degrees_of_freedom
5f076e33584c61dca4410b7ed47feb0043ec97cb
1,958
import os def get_requires_file(dist): """Get the path to the egg-info requires.txt file for a given dist.""" return os.path.join( os.path.join(dist.location, dist.project_name + ".egg-info"), "requires.txt", )
f0fc66abc15fcba133240cc1783059d5694a08f6
1,959
def get_range_to_list(range_str): """ Takes a range string (e.g. 123-125) and return the list """ start = int(range_str.split('-')[0]) end = int(range_str.split('-')[1]) if start > end: print("Your range string is wrong, the start is larger than the end!", range_str) return range(start, end+1)
a88d9780ac2eba1d85ae70c1861f6a3c74991e5c
1,960
import base64 def get_saml_assertion(server, session, access_token, id_token=None): """ Exchange access token to saml token to connect to VC Sample can be found at https://github.com/vmware/vsphere-automation-sdk-python/blob/master/samples/vsphere/oauth/exchange_access_id_token_for_saml.py """ stub_config = StubConfigurationFactory.new_std_configuration( get_requests_connector( session=session, url=HTTP_ENDPOINT.format(server) ) ) oauth_security_context = create_oauth_security_context(access_token) stub_config.connector.set_security_context(oauth_security_context) token_exchange = TokenExchange(stub_config) exchange_spec = token_exchange.ExchangeSpec( grant_type=token_exchange.TOKEN_EXCHANGE_GRANT, subject_token_type=token_exchange.ACCESS_TOKEN_TYPE, actor_token_type=token_exchange.ID_TOKEN_TYPE, requested_token_type=token_exchange.SAML2_TOKEN_TYPE, actor_token=id_token, subject_token=access_token) response = token_exchange.exchange(exchange_spec) saml_token = response.access_token # convert saml token to saml assertion samlAssertion = etree.tostring( etree.XML(base64.decodebytes( bytes(saml_token, 'utf-8') )) ).decode('utf-8') return samlAssertion
174400720340fb831d6a62728b48555db7349b95
1,961
import sys def insert_cluster_metadata(clconn, name, desc, cli, verbose=False): """ Insert the cluster metadata information in the SQL table and return its rowid. This is the information that describes how the clusters were made. :param clconn: the database connection :param name: the name of the clustering approach :param desc: a human readable description of the clustering :param cli: the command line command used for the clustering :param verbose: more output :return: the clusterdefinition_rowid for this metadata """ if verbose: sys.stderr.write(f"{color.GREEN}Adding the metadata{color.ENDC}\n") clcur = clconn.cursor() clcur.execute("INSERT INTO clusterdefinition(name, description, command) values (?,?,?)", [name, desc, cli]) cd_rowid = clcur.lastrowid clconn.commit() return cd_rowid
bc7462f3911225a935183747263656d02ee761fc
1,962
import html def display_value(id, value): """ Display a value in a selector-like style. Parameters ---------- id: int Id of the value to be displayed """ return html.div( { "class": "py-3 pl-3 w-full border-[1px] sm:w-[48%] md:w-[121px] bg-nav rounded-[3px] md:mr-2 my-4 before:content-[''] before:border-[6px] before:border-[transparent] before:top-1/2 before:right-5 before:-translate-y-0.5 before:absolute xl:w-[14%]", }, html.h3( {"value": id}, value, ), )
aeb3ceeeb8a2048beb8df7f5d3e6027d90df4739
1,963
def helmholtz_adjoint_double_layer_regular( test_point, trial_points, test_normal, trial_normals, kernel_parameters ): """Helmholtz adjoint double layer for regular kernels.""" wavenumber_real = kernel_parameters[0] wavenumber_imag = kernel_parameters[1] npoints = trial_points.shape[1] dtype = trial_points.dtype factor_real = _np.empty(npoints, dtype=dtype) factor_imag = _np.empty(npoints, dtype=dtype) output_real = _np.empty(npoints, dtype=dtype) output_imag = _np.empty(npoints, dtype=dtype) diff = _np.empty((3, npoints), dtype=dtype) dist = _np.zeros(npoints, dtype=dtype) laplace_grad = _np.zeros(npoints, dtype=dtype) m_inv_4pi = dtype.type(M_INV_4PI) for i in range(3): for j in range(npoints): diff[i, j] = test_point[i] - trial_points[i, j] dist[j] += diff[i, j] * diff[i, j] for j in range(npoints): dist[j] = _np.sqrt(dist[j]) for i in range(3): for j in range(npoints): laplace_grad[j] += diff[i, j] * test_normal[i] for j in range(npoints): laplace_grad[j] *= m_inv_4pi / (dist[j] * dist[j] * dist[j]) factor_real[j] = _np.cos(wavenumber_real * dist[j]) * laplace_grad[j] factor_imag[j] = _np.sin(wavenumber_real * dist[j]) * laplace_grad[j] if wavenumber_imag != 0: for j in range(npoints): factor_real[j] *= _np.exp(-wavenumber_imag * dist[j]) factor_imag[j] *= _np.exp(-wavenumber_imag * dist[j]) for j in range(npoints): output_real[j] = (-1 - wavenumber_imag * dist[j]) * factor_real[ j ] - wavenumber_real * dist[j] * factor_imag[j] output_imag[j] = wavenumber_real * dist[j] * factor_real[j] + factor_imag[j] * ( -1 - wavenumber_imag * dist[j] ) return output_real + 1j * output_imag
6b640e2b7b02e124d893452b8437bfdf6f4af1ec
1,964
import sys import signal def compute_vad(wav_rspecifier, feats_wspecifier, opts): """This function computes the vad based on ltsv features. The output is written in the file denoted by feats_wspecifier, and if the test_plot flaf is set, it produces a plot. Args: wav_rspecifier: An ark or scp file as in Kaldi, that contains the input audio feats_wspecifier: An ark or scp file as in Kaldi, that contains the input audio opts: Options. See main function for list of options Returns: The number of successful trials. """ num_utts, num_success = 0, 0 with SequentialWaveReader(wav_rspecifier) as reader, \ VectorWriter(feats_wspecifier) as writer: for num_utts, (key, wave) in enumerate(reader, 1): if wave.duration < opts.min_duration: print("File: {} is too short ({} sec): producing no output.".format(key, wave.duration), file=sys.stderr) continue num_chan = wave.data().num_rows if opts.channel >= num_chan: print("File with id {} has {} channels but you specified " "channel {}, producing no output.", file=sys.stderr) continue channel = 0 if opts.channel == -1 else opts.channel fr_length_samples = int(opts.frame_window*wave.samp_freq*(10**(-3))) fr_shift_samples = int(opts.frame_shift*wave.samp_freq*(10**(-3))) try: wav_data = np.squeeze(wave.data()[channel].numpy()) sample_freqs, segment_times, spec = signal.spectrogram(wav_data, fs=wave.samp_freq, nperseg=fr_length_samples, nfft=opts.nfft, noverlap=fr_length_samples-fr_shift_samples, scaling='spectrum',mode = 'psd') specT = np.transpose(spec) spect_n = ARMA.ApplyARMA(specT, opts.arma_order) ltsv_f = LTSV.ApplyLTSV(spect_n, opts.ltsv_ctx_window, opts.threshold, opts.slope, opts.sigmoid_scale) vad_feat = DCTF.ApplyDCT(opts.dct_num_cep, opts.dct_ctx_window, ltsv_f) feats = Vector(vad_feat) if opts.test_plot: show_plot(segment_times, sample_freqs, spec, wave, wav_data, vad_feat) except: print("Failed to compute features for utterance", key, file=sys.stderr) continue writer[key] = feats num_success += 1 if num_utts % 10 == 0: print("Processed {} utterances".format(num_utts), file=sys.stderr) print("Done {} out of {} utterances".format(num_success, num_utts), file=sys.stderr) return num_success != 0
7f652befce6b02c89f0e44d20dd08ee12b1e2783
1,965
def crt(s): """ Solve the system given by x == v (mod k), where (k, v) goes over all key-value pairs of the dictionary s. """ x, n = 0, 1 for q, r in s.items(): x += n * ((r-x) * inverse(n, q) % q) n *= q return x
6bcd489f9096cb780c935dd30ea90663d91f854f
1,966
def create_new_tf_session(**kwargs): """Get default session or create one with a given config""" sess = tf.get_default_session() if sess is None: sess = make_session(**kwargs) sess.__enter__() assert tf.get_default_session() return sess
1520f330fe7939c997588cf3d8c63265610baa23
1,967
import typing import re def MaybeGetHexShaOfLastExportedCommit( repo: git.Repo, head_ref: str = "HEAD") -> typing.List[str]: """The the SHA1 of the most recently exported commit. Args: repo: The repo to iterate over. head_ref: The starting point for iteration, e.g. the commit closest to head. Returns: The hex SHA1 of the last exported commited, else None. """ export_re = re.compile(r'\n\[Exported from ([a-fA-F0-9]{40})\]') try: for commit in repo.iter_commits(head_ref): if '\n[Exported from ' in commit.message: match = export_re.search(commit.message) assert match return match.group(1) except git.GitCommandError: # Raise if no HEAD, i.e. no commits. pass return None
1d6afe688567ffe245e9aabe753c90e6baf22bfe
1,968
def get_inchi(ID): """This function accept UNIQUE-ID and return InChI string of a certain compound""" inchi = df_cpd['INCHI'][ID] return inchi
2420a73c2a5e21348c6efde7cd6bcde0cc0c0c00
1,969
import os def run_samtools_faidx(job, ref_id): """ Use Samtools to create reference index file :param JobFunctionWrappingJob job: passed automatically by Toil :param str ref_id: FileStoreID for the reference genome :return: FileStoreID for reference index :rtype: str """ job.fileStore.logToMaster('Created reference index') work_dir = job.fileStore.getLocalTempDir() job.fileStore.readGlobalFile(ref_id, os.path.join(work_dir, 'ref.fasta')) command = ['faidx', '/data/ref.fasta'] dockerCall(job=job, workDir=work_dir, parameters=command, tool='quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e') return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'ref.fasta.fai'))
6736d314c6fb72fcf019a41477e0b0bc77dd94bc
1,970
from typing import Optional def pad_to_multiple(array: Array, factor: int, axis: int, mode: Optional[str] = 'constant', constant_values=0) -> Array: """Pads `array` on a given `axis` to be a multiple of `factor`. Padding will be concatenated to the end of the axis only, not the beginning. If the length along `axis` is already a multiple of `factor`, this is effectively a no-op. Args: array: Array with rank >= 1 to pad. factor: Positive integer factor to pad for. axis: A valid axis in `array` to pad. mode: The padding mode to use according to `jnp.pad`. Defaults to 'constant'. See `jax.numpy.pad` documentation for more. constant_values: For 'constant' mode, the pad value to use within `jnp.pad`. Defaults to 0. Returns: The padded Array result. """ array = jnp.asarray(array) if factor < 1: raise ValueError(f'`factor` must be positive but got {factor}.') rank = array.ndim if axis < -rank or axis >= rank: raise ValueError( f'`axis` ({axis}) out of bounds for `array` rank ({rank}).') axis_len = array.shape[axis] pad_len = -axis_len % factor pad_width = [(0, 0)] * rank pad_width[axis] = (0, pad_len) kwargs = {} if mode == 'constant': kwargs['constant_values'] = constant_values return jnp.pad(array=array, pad_width=pad_width, mode=mode, **kwargs)
5164e124dc270a47ef8f8b1512cdefe796904791
1,971
import json def easy2dict(config: easydict.EasyDict): """ :param config: EasyDict参数 """ # fix a Bug: cfg = dict(config) 仅仅转换第一层easydict cfg = json.loads(json.dumps(config)) return cfg
08a69816f44dfa03d86124792c1da1355710426f
1,972
import math def define_request( dataset, query=None, crs="epsg:4326", bounds=None, bounds_crs="EPSG:3005", sortby=None, pagesize=10000, ): """Define the getfeature request parameters required to download a dataset References: - http://www.opengeospatial.org/standards/wfs - http://docs.geoserver.org/stable/en/user/services/wfs/vendor.html - http://docs.geoserver.org/latest/en/user/tutorials/cql/cql_tutorial.html """ # validate the table name and find out how many features it holds table = validate_name(dataset) n = bcdata.get_count(table, query=query) wfs = WebFeatureService(url=bcdata.OWS_URL, version="2.0.0") geom_column = wfs.get_schema("pub:" + table)["geometry_column"] # DataBC WFS getcapabilities says that it supports paging, # and the spec says that responses should include 'next URI' # (section 7.7.4.4.1).... # But I do not see any next uri in the responses. Instead of following # the paged urls, for datasets with >10k records, just generate urls # based on number of features in the dataset. chunks = math.ceil(n / pagesize) # if making several requests, we need to sort by something if chunks > 1 and not sortby: sortby = get_sortkey(table) # build the request parameters for each chunk param_dicts = [] for i in range(chunks): request = { "service": "WFS", "version": "2.0.0", "request": "GetFeature", "typeName": table, "outputFormat": "json", "SRSNAME": crs, } if sortby: request["sortby"] = sortby # build the CQL based on query and bounds # (the bbox param shortcut is mutually exclusive with CQL_FILTER) if query and not bounds: request["CQL_FILTER"] = query if bounds: b0, b1, b2, b3 = [str(b) for b in bounds] bnd_query = f"bbox({geom_column}, {b0}, {b1}, {b2}, {b3}, '{bounds_crs}')" if not query: request["CQL_FILTER"] = bnd_query else: request["CQL_FILTER"] = query + " AND " + bnd_query if chunks > 1: request["startIndex"] = i * pagesize request["count"] = pagesize param_dicts.append(request) return param_dicts
215b39a606bfa7fc6736e8b2f61bf9c298412b36
1,973
from typing import List from typing import Tuple import torch def get_bert_input( examples: List[tuple], ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Convert input list to torch tensor. Args: examples: (input_id_list, ) Returns: attention_mask, input_ids_tensor, token_type_ids_tensor """ input_ids = examples[0] token_type_ids = examples[1] max_seq_len = min(max(len(input_id) for input_id in input_ids), MAX_SEQ_LEN) input_ids_tensor = torch.zeros((len(input_ids), max_seq_len), dtype=torch.long) token_type_ids_tensor = torch.zeros_like(input_ids_tensor) attention_mask = torch.ones_like(input_ids_tensor) for i, input_id in enumerate(input_ids): cur_seq_len = len(input_id) if cur_seq_len <= max_seq_len: input_ids_tensor[i, :cur_seq_len] = torch.tensor(input_id, dtype=torch.long) token_type_ids_tensor[i, :cur_seq_len] = torch.tensor( token_type_ids[i], dtype=torch.long ) attention_mask[i, cur_seq_len:] = 0 else: input_ids_tensor[i] = torch.tensor( input_id[: max_seq_len - 1] + [102], dtype=torch.long ) token_type_ids_tensor[i] = torch.tensor( token_type_ids[i][:max_seq_len], dtype=torch.long ) return attention_mask, input_ids_tensor, token_type_ids_tensor
954d0990d5cd5f28d588c472f7d7d48ecc4b3eb2
1,974
import io import traceback def _format_exception(e: BaseException): """ Shamelessly stolen from stdlib's logging module. """ with io.StringIO() as sio: traceback.print_exception(e.__class__, e, e.__traceback__, None, sio) return sio.getvalue().strip()
d80f60634a9862ca282b1c7ccf63ae8e945ffdc9
1,975
import json def batch_deploy(blueprint_id, parent_deployments, group_id=None, new_deployment_ids=None, inputs=None, labels=None, **_): """ Create deployments for a batch from a single blueprint. :param blueprint_id: The blueprint, which has already been uploaded. :type blueprint_id: str :param parent_deployments: A list of parent deployments. :type parent_deployments: list :param group_id: the new group ID. :type group_id: str :param new_deployment_ids: a list of new deployment names. :type new_deployment_ids: list :param inputs: A list of inputs to the new deployments. :type inputs: list :param labels: A list of labels to the new deployments. :type labels: list :return: group_id :rtype: str """ if not isinstance(parent_deployments, list): # If someone sends a list in the CLI, # it will not be properly formatted. try: parent_deployments = json.loads(parent_deployments) except json.JSONDecodeError: raise NonRecoverableError( 'The parent_deployments parameter is not properly formatted. ' 'Proper format is a list, a {t} was provided: {v}.'.format( t=type(parent_deployments), v=parent_deployments)) group_id = group_id or generate_group_id_from_blueprint( blueprint_id) new_deployment_ids = new_deployment_ids or \ generate_deployment_ids_from_group_id(group_id, parent_deployments) inputs = generate_inputs_from_deployments(inputs, parent_deployments) labels = labels or generate_labels_from_inputs(inputs) create_deployments( group_id, blueprint_id, new_deployment_ids, inputs, labels) return group_id
8128e39c94bfc15a5b75d3a88274720b52d8d900
1,976
import json def compute_task_def(build, settings, fake_build): """Returns a swarming task definition for the |build|. Args: build (model.Build): the build to generate the task definition for. build.proto.infra and build.proto.input.properties must be initialized. settings (service_config_pb2.SettingsCfg): global settings. fake_build (bool): False if the build is not going to be actually created in buildbucket. This is used by led that only needs the definition of the task that *would be* used for a new build like this. Returns a task_def dict. Corresponds to JSON representation of https://cs.chromium.org/chromium/infra/luci/appengine/swarming/swarming_rpcs.py?q=NewTaskRequest&sq=package:chromium&g=0&l=438 """ assert isinstance(build, model.Build), type(build) assert isinstance(fake_build, bool), type(fake_build) assert build.proto.HasField('infra') assert build.proto.input.HasField('properties') assert isinstance(settings, service_config_pb2.SettingsCfg) sw = build.proto.infra.swarming task = { 'name': 'bb-%d-%s' % (build.proto.id, build.builder_id), 'tags': _compute_tags(build, settings), 'priority': str(sw.priority), 'task_slices': _compute_task_slices(build, settings), } if build.proto.number: # pragma: no branch task['name'] += '-%d' % build.proto.number if sw.task_service_account: # pragma: no branch # Don't pass it if not defined, for backward compatibility. task['service_account'] = sw.task_service_account if not fake_build: # pragma: no branch | covered by swarmbucketapi_test.py task['pubsub_topic'] = 'projects/%s/topics/swarming' % ( app_identity.get_application_id() ) task['pubsub_userdata'] = json.dumps( { 'build_id': build.proto.id, 'created_ts': utils.datetime_to_timestamp(utils.utcnow()), 'swarming_hostname': sw.hostname, }, sort_keys=True, ) return task
7071960148ed391b42a4b7ad1e4ed4e6d0c10713
1,977
import traceback from bs4 import BeautifulSoup def parse_markdown(page, target=None, pages=None, categories=[], mode="html", current_time="", bypass_errors=False): """Takes a page object (must contain "md" attribute) and returns parsed and filtered HTML.""" target = get_target(target) logger.info("Preparing page %s" % page["name"]) # We'll apply these filters to the page page_filters = get_filters_for_page(page, target) logger.debug("Filters for page {pg}: {fl}".format( pg=page["name"], fl=page_filters)) # Get the markdown, preprocess, and apply md filters try: md = preprocess_markdown(page, target=target, categories=categories, mode=mode, current_time=current_time, page_filters=page_filters, bypass_errors=bypass_errors, ) except Exception as e: traceback.print_tb(e.__traceback__) recoverable_error("Couldn't preprocess markdown for page %s: %s(%s)" % (page["name"], repr(e), str(e)), bypass_errors) # Just fetch the md without running the preprocessor md = preprocess_markdown(page, target=target, categories=categories, mode=mode, current_time=current_time, page_filters=page_filters, bypass_errors=bypass_errors, skip_preprocessor=True ) # Actually parse the markdown logger.info("... parsing markdown...") html = markdown(md, extensions=["markdown.extensions.extra", "markdown.extensions.toc"], lazy_ol=False) # Apply raw-HTML-string-based filters here for filter_name in page_filters: if "filter_html" in dir(config.filters[filter_name]): logger.info("... applying HTML filter %s" % filter_name) html = config.filters[filter_name].filter_html( html, currentpage=page, categories=categories, pages=pages, target=target, current_time=current_time, mode=mode, config=config, logger=logger, ) # Some filters would rather operate on a soup than a string. # May as well parse once and re-serialize once. soup = BeautifulSoup(html, "html.parser") # Apply soup-based filters here for filter_name in page_filters: if "filter_soup" in dir(config.filters[filter_name]): logger.info("... applying soup filter %s" % filter_name) config.filters[filter_name].filter_soup( soup, currentpage=page, categories=categories, pages=pages, target=target, current_time=current_time, mode=mode, config=config, logger=logger, ) # ^ the soup filters apply to the same object, passed by reference logger.info("... re-rendering HTML from soup...") html2 = str(soup) return html2
4e079c4c9d5f9ac9891f515ebc806877f3568cc8
1,978
def draw_bs_pairs(x, y, func, size=1): """Perform pairs bootstrap for replicates.""" # Set up array of indices to sample from: inds inds = np.arange(len(x)) # Initialize replicates bs_replicates = np.empty(size) # Generate replicates for i in range(size): bs_inds = np.random.choice(inds, len(inds)) bs_x, bs_y = x[bs_inds], y[bs_inds] bs_replicates[i] = func(bs_x, bs_y) return bs_replicates
f0b05241f567570dd96ed97340d5075b8ccb5a7b
1,979
def has_hole(feature): """ Detects the number of holes in a shapely polygon or multipolygon. Parameters ---------- feature : shapely Polygon or Multipolygon polygon to be analyzed for holes Returns ------- int number of holes """ if feature.geom_type == 'Polygon': num_holes = len(feature.interiors) elif feature.geom_type == 'MultiPolygon': num_holes = np.sum([len(x.interiors) for x in feature]) return num_holes
e854d7a4902e66ec95479816662a145e184ee8af
1,980
def linder_table(file=None, **kwargs): """Load Linder Model Table Function to read in isochrone models from Linder et al. 2019. Returns an astropy Table. Parameters ---------- age : float Age in Myr. If set to None, then an array of ages from the file is used to generate dictionary. If set, chooses the closest age supplied in table. file : string Location and name of COND file. See isochrones stored at https://phoenix.ens-lyon.fr/Grids/. Default is model.AMES-Cond-2000.M-0.0.JWST.Vega """ # Default file to read and load if file is None: base_dir = conf.PYNRC_PATH + 'linder/isochrones/' file = base_dir + 'BEX_evol_mags_-3_MH_0.00.dat' with open(file) as f: content = f.readlines() content = [x.strip('\n') for x in content] cnames = content[2].split(',') cnames = [name.split(':')[1] for name in cnames] ncol = len(cnames) content_arr = [] for line in content[4:]: arr = np.array(line.split()).astype(np.float) if len(arr)>0: content_arr.append(arr) content_arr = np.array(content_arr) # Convert to Astropy Table tbl = Table(rows=content_arr, names=cnames) return tbl
ff6b187009c8bbcef8ae604095c289429863907e
1,981
def json_redirect(request, url, **kwargs): """ Returns a JSON response for redirecting to a new URL. This is very specific to this project and depends on the JavaScript supporting the result that is returned from this method. """ if not request.is_ajax(): raise PermissionDenied("Must be an AJAX request.") return JsonResponse({'url': url}, **kwargs)
7fbafcfc400c733badc26fcb97bc3a61f4c49f74
1,982
def unauthenticatedClient(): """Retorna um api client sem ninguém autenticado""" return APIClient()
b821a7c1e11a398eee691ca43be54d5aca00d213
1,983
import os def filters_to_kcorrect(curve_file, verbose=False): """ Convert a filter response curve to the Kcorrect format. This is used by Kcorrect and iSEDFit. """ if not os.path.isfile(curve_file): raise IOError("# Cannot find the response curve file {}".format(curve_file)) # Read in the .txt response curve wave, response = np.genfromtxt(curve_file, usecols=(0, 1), unpack=True) # Output file name prefix, _ = os.path.splitext(curve_file) output_par = prefix + '.par' if os.path.isfile(output_par): if verbose: print("# Curve {0} is already available".format(output_par)) else: assert len(wave) == len(response), ''' Wavelength and response curve should have the same size''' par = open(output_par, 'w') par.write( "# %s\n typedef struct {\n double lambda;\n double pass;\n } KFILTER;\n\n") for w, r in zip(wave, response): par.write("KFILTER %10.4f %11.7f\n" % (w, r)) par.close() return wave, response
144e1af636778e503c394a615af741dc51f5f7d9
1,984
import re def get_known_disk_attributes(model): """Get known NVMe/SMART attributes (model specific), returns str.""" known_attributes = KNOWN_DISK_ATTRIBUTES.copy() # Apply model-specific data for regex, data in KNOWN_DISK_MODELS.items(): if re.search(regex, model): for attr, thresholds in data.items(): if attr in known_attributes: known_attributes[attr].update(thresholds) else: known_attributes[attr] = thresholds # Done return known_attributes
39ece3213996b201d1109d7787bcd8fed859235b
1,985
def get_one_exemplar_per_class_proximity(proximity): """ unpack proximity object into X, y and random_state for picking exemplars. ---- Parameters ---- proximity : Proximity object Proximity like object containing the X, y and random_state variables required for picking exemplars. ---- Returns ---- result : function function choosing one exemplar per class """ return get_one_exemplar_per_class(proximity.X, proximity.y, proximity.random_state)
eeb46d07a757d6b06432369f26f5f2391d9b14cd
1,986
def annotation_layers(state): """Get all annotation layer names in the state Parameters ---------- state : dict Neuroglancer state as a JSON dict Returns ------- names : list List of layer names """ return [l["name"] for l in state["layers"] if l["type"] == "annotation"]
98dee6b821fbfe2dd449859400c2166ba694025f
1,987
def describe_bvals(bval_file) -> str: """Generate description of dMRI b-values.""" # Parse bval file with open(bval_file, "r") as file_object: raw_bvals = file_object.read().splitlines() # Flatten list of space-separated values bvals = [ item for sublist in [line.split(" ") for line in raw_bvals] for item in sublist ] bvals = sorted([int(v) for v in set(bvals)]) bvals = [num_to_str(v) for v in bvals] bval_str = list_to_str(bvals) bval_str = "b-values of {} acquired".format(bval_str) return bval_str
1d19c71d9422a37f425c833df52d9b1936195660
1,988
def weight_update4(weights, x_white, bias1, lrate1, b_exp): """ Update rule for infomax This function recieves parameters to update W1 * Input weights : unmixing matrix (must be a square matrix) x_white: whitened data bias1: current estimated bias lrate1: current learning rate b_exp : experiment * Output weights : updated mixing matrix bias: updated bias lrate1: updated learning rate """ NCOMP, NVOX = (x_white.shape) block1 = (int(np.floor(np.sqrt(NVOX / 3)))) last1 = (int(np.fix((NVOX/block1-1)*block1+1))) if not b_exp : permute1 = permutation(NVOX) else : permute1 = range(NVOX) for start in range(0, last1, block1): if start + block1 < NVOX: tt2 = (start + block1 ) else: tt2 = (NVOX) block1 = (NVOX - start) unmixed = (np.dot(weights, x_white[:, permute1[start:tt2]]) + bias1) logit = 1 / (1 + np.exp(-unmixed)) weights = (weights + lrate1 * np.dot( block1 * np.eye(NCOMP) + np.dot( (1-2*logit), unmixed.T), weights)) bias1 = (bias1 + lrate1 * (1-2*logit).sum(axis=1).reshape(bias1.shape)) # Checking if W blows up if (np.isnan(weights)).any() or np.max(np.abs(weights)) > MAX_WEIGHT: # ("Weight is outside the range. Restarting.") weights = (np.eye(NCOMP)) bias1 = (np.zeros((NCOMP, 1))) error = 1 if lrate1 > 1e-6 and \ matrix_rank(x_white) < NCOMP: a = 1 # ("Data 1 is rank defficient" # ". I cannot compute " + # str(NCOMP) + " components.") return (None, None, None, 1) if lrate1 < 1e-6: a = 1 # ("Weight matrix may" # " not be invertible...") return (None, None, None, 1) break else: error = 0 return (weights, bias1, lrate1, error)
6c2d5c6610724787b4e8c8fb42569265e4b13d76
1,989
def Dijkstra(graph, source): """ Dijkstra's algorithm for shortest path between two vertices on a graph. Arguments --------- graph -- directed graph; object of Graph class source -- start vertex >>> graph = Graph() >>> graph.addVertex("A") >>> conns = [ ("A", "B"), ("A", "C"), ("B", "C"), ("C", "D") ] >>> for va, vb in conns: ... graph.addConn(va, vb) >>> dists = Dijkstra(graph, 'A') >>> dists['D'] 2 """ dist = {} pq = pQ.BinaryHeap() for node in graph: if node != source: dist[node] = float('inf') else: dist[node] = 0 pq.insert((dist[node], node)) while not pq.isEmpty(): current = pq.delMin() for next_node in graph.getConns(current[1]): new_dist = current[0] + 1 if new_dist < dist[next_node]: dist[next_node] = new_dist pq.editHeap(next_node, (dist[next_node], next_node)) return dist
9585c13c5504cdbff62494c2d5d97655c2281c34
1,990
def annealing_epsilon(episode: int, min_e: float, max_e: float, target_episode: int) -> float: """Return an linearly annealed epsilon Epsilon will decrease over time until it reaches `target_episode` (epsilon) | max_e ---|\ | \ | \ | \ min_e ---|____\_______________(episode) | target_episode slope = (min_e - max_e) / (target_episode) intercept = max_e e = slope * episode + intercept Args: episode (int): Current episode min_e (float): Minimum epsilon max_e (float): Maximum epsilon target_episode (int): epsilon becomes the `min_e` at `target_episode` Returns: float: epsilon between `min_e` and `max_e` """ slope = (min_e - max_e) / (target_episode) intercept = max_e return max(min_e, slope * episode + intercept)
fab650085f271f1271025e23f260eb18e645a9ba
1,991
import jsonschema def ExtendWithDefault(validator_class): """Takes a validator and makes it set default values on properties. Args: validator_class: A class to add our overridden validators to Returns: A validator_class that will set default values and ignore required fields """ validate_properties = validator_class.VALIDATORS['properties'] def SetDefaultsInProperties(validator, user_schema, user_properties, parent_schema): SetDefaults(validator, user_schema or {}, user_properties, parent_schema, validate_properties) return jsonschema.validators.extend( validator_class, {PROPERTIES: SetDefaultsInProperties, REQUIRED: IgnoreKeyword})
42ab80b2c52e474a354589eb4c6041450cf23fd2
1,992
def coach_input_line(call, school, f): """ Returns a properly formatted line about a coach. :param call: (String) The beginning of the line, includes the gender, sport, and school abbreviation. :param school:(String) The longform name of the school. :param f: (String) The input line from the user. :return: (String) A properly formatted line with all necessary information about a coach. """ f = f.split("\t") newCall = f[2].split(" ") for item in newCall: call += item[0].lower() print(call) print(f[2]) return f"{call}\t{school}'s {coachformat(f[2])}, {f[0]} {f[1]},\t{f[0]} {f[1]},\t{f[1]}\n"
762127ac058949af890c2ef7f19b924642cc4c39
1,993
def pad_seq(seq, max_length, PAD=0): """ :param seq: list of int, :param max_length: int, :return seq: list of int, """ seq += [PAD for i in range(max_length - len(seq))] return seq
bb61677bc658e22b317e3d5fb10f7c85a84200d0
1,994
def complex_domain(spectrogram): """ Complex Domain. Parameters ---------- spectrogram : :class:`Spectrogram` instance :class:`Spectrogram` instance. Returns ------- complex_domain : numpy array Complex domain onset detection function. References ---------- .. [1] Juan Pablo Bello, Chris Duxbury, Matthew Davies and Mark Sandler, "On the use of phase and energy for musical onset detection in the complex domain", IEEE Signal Processing Letters, Volume 11, Number 6, 2004. """ # take the sum of the absolute changes return np.asarray(np.sum(np.abs(_complex_domain(spectrogram)), axis=1))
10248ca5bb291326018934d654b2fee6a8a972d0
1,995
import torch def toOneHot(action_space, actions): """ If action_space is "Discrete", return a one hot vector, otherwise just return the same `actions` vector. actions: [batch_size, 1] or [batch_size, n, 1] If action space is continuous, just return the same action vector. """ # One hot encoding buffer that you create out of the loop and just keep reusing if action_space.__class__.__name__ == "Discrete": nr_actions = action_space.n actions_onehot_dim = list(actions.size()) actions_onehot_dim[-1] = nr_actions actions = actions.view(-1, 1).long() action_onehot = torch.FloatTensor(actions.size(0), nr_actions) return_variable = False if isinstance(actions, Variable): actions = actions.data return_variable = True # In your for loop action_onehot.zero_() if actions.is_cuda: action_onehot = action_onehot.cuda() action_onehot.scatter_(1, actions, 1) if return_variable: action_onehot = Variable(action_onehot) action_onehot.view(*actions_onehot_dim) return action_onehot else: return actions.detach()
bad47c1f55795d16bdcd67aac67b4ae40a40363c
1,996
def find_triangle(n): """Find the first triangle number with N divisors.""" t, i = 1, 1 while True: i += 1 t += i if len(divisors(t)) > n: return t
b74e0e8fd869b4d9a9ae1fe83299f32eaa848e9a
1,997
import requests def get_main_page_soup(home_url): """ parse main page soup""" user_agent= 'Mozilla / 5.0 (Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, ' \ 'like Gecko) Chrome / 64.0.3282.140 Safari / 537.36 Edge / 18.17763 ' headers = {'User-agent':user_agent} # request to javbus res = requests.get(home_url, headers=headers, timeout=20) res.raise_for_status() # init beautiful soup soup = bs4.BeautifulSoup(res.text, 'lxml') return soup
6100fa9b669ee498dea354418b3816bbc46b3b26
1,998
def gen_task4() -> np.ndarray: """Task 4: main corner of a triangle.""" canv = blank_canvas() r, c = np.random.randint(GRID-2, size=2, dtype=np.int8) syms = rand_syms(6) # 6 symbols for triangle # Which orientation? We'll create 4 rand = np.random.rand() if rand < 0.25: # top left rows, cols = [r, r, r, r+1, r+1, r+2], [c, c+1, c+2, c, c+1, c] elif rand < 0.50: # top right rows, cols = [r, r, r, r+1, r+1, r+2], [c+2, c, c+1, c+1, c+2, c+2] elif rand < 0.75: # bottom left rows, cols = [r+2, r, r+1, r+1, r+2, r+2], [c, c, c, c+1, c+1, c+2] else: # bottom right rows, cols = [r+2, r, r+1, r+1, r+2, r+2], [c+2, c+2, c+1, c+2, c, c+1] canv[rows, cols] = syms return [4, syms[0]], canv
d367af38a74fd57eb86d001103a1f8656b395209
1,999