rizla-156 / README.md
rizla's picture
Upload folder using huggingface_hub
8107860 verified
metadata
license: cc-by-nc-nd-4.0
library_name: peft
tags:
  - generated_from_trainer
base_model: rizla/rizla-17
model-index:
  - name: lorazapam-out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: rizla/rizla-17
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: meta-math/MetaMathQA-40K
    type:
      system_prompt: "You are an expert problem solver who is great at teaching how to solve problems via first principles reasoning"
      field_system: system
      field_instruction: query
      field_output: response
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"

dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./lorazapam-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
#  - lm_head.*
#  - model.embed_tokens.*
#  - model.layers.2[0-9]+.block_sparse_moe.gate.*
#  - model.layers.2[0-9]+.block_sparse_moe.experts.*
#  - model.layers.3[0-9]+.block_sparse_moe.gate.*
#  - model.layers.3[0-9]+.block_sparse_moe.experts.*

model_config:
  output_router_logits: true

adapter: qlora
lora_model_dir:

sequence_len: 512
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
# deepspeed: deepspeed_configs/zero_1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

lorazapam-out

This model is a fine-tuned version of rizla/rizla-17 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.8.2
  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0