File size: 30,682 Bytes
8b87358
 
 
 
 
 
 
 
f3725a9
678ff71
81d7def
c9e5868
7bde2e9
c9e5868
3c27777
 
 
c9e5868
8b87358
21b74d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b87358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979a7b6
8b87358
 
bbd78ec
8b87358
 
 
 
bbd78ec
8b87358
 
 
bbd78ec
8b87358
 
 
 
 
 
 
 
81d7def
82c1429
 
866dbcd
c9e5868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255c7b
d226f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0322896
ccb675d
f3a7e83
5065990
4edafdf
f3a7e83
 
 
ff1e401
 
 
 
 
 
 
 
 
f3a7e83
 
0322896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31492de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0bc5f7
 
 
 
 
 
 
 
 
 
 
 
 
31492de
0322896
f0bc5f7
 
 
31492de
 
 
 
f0bc5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0322896
 
f0bc5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad2eb5c
f061989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f108e0
e43d9f0
45d344c
cf21437
c9e5868
8b87358
2255c7b
 
 
f0bc5f7
31492de
f0bc5f7
 
f061989
f0bc5f7
 
 
f061989
f0bc5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb675d
 
cf21437
 
 
d1f4c95
f061989
 
 
cf21437
 
 
 
 
 
f474536
f061989
 
4be581d
f061989
 
cf21437
 
 
 
 
 
f061989
 
 
 
 
 
 
 
cf21437
 
 
 
 
 
 
 
 
 
 
 
 
0f108e0
cf21437
0f108e0
 
 
 
cf21437
 
0f108e0
cf21437
 
 
0f108e0
f061989
d8c1250
a312d58
 
73cee42
 
4f1e4cb
 
083c145
4f1e4cb
5c648b4
 
 
 
 
9d8bbd3
 
 
a69ec49
9f1fb93
215a635
d8c1250
215a635
a69ec49
215a635
73cee42
9d8bbd3
 
 
cf21437
 
9d8bbd3
 
 
cf21437
 
 
 
 
a69ec49
 
9d8bbd3
73cee42
 
 
 
 
20887f3
3fa059c
8b87358
cf21437
8b87358
5c648b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio


# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt')  # 使用 YOLOv8 預訓練模型


dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", 
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", 
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", 
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", 
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", 
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", 
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", 
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", 
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", 
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", 
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", 
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", 
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", 
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", 
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", 
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", 
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", 
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", 
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", 
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", 
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", 
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", 
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", 
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", 
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", 
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link():
    return "https://www.akc.org/dog-breeds/"

# def predict(image):
#     if image is None:
#         return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
#     try:
#         image_tensor = preprocess_image(image)
#         with torch.no_grad():
#             output = model(image_tensor)
#             logits = output[0] if isinstance(output, tuple) else output

#             probabilities = F.softmax(logits, dim=1)
#             topk_probs, topk_indices = torch.topk(probabilities, k=3)

#             top1_prob = topk_probs[0][0].item()
#             topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
#             topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]

#             if top1_prob >= 0.5:
#                 breed = topk_breeds[0]
#                 description = get_dog_description(breed)
#                 return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#             elif top1_prob < 0.2:
#                 return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
#                         gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
#             else:
#                 explanation = (
#                     f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
#                     f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
#                     f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
#                     f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
#                     "Click on a button to view more information about the breed."
#                 )
#                 return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")

#     except Exception as e:
#         return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


# def format_description(description, breed):
#     if isinstance(description, dict):
#         formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
#     else:
#         formatted_description = description

#     akc_link = get_akc_breeds_link()
#     formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

#     disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
#                   "You may need to search for the specific breed on that page. "
#                   "I am not responsible for the content on external sites. "
#                   "Please refer to the AKC's terms of use and privacy policy.*")
#     formatted_description += disclaimer

#     return formatted_description

# def show_details(breed):
#     breed_name = breed.split("More about ")[-1]
#     description = get_dog_description(breed_name)
#     return format_description(description, breed_name)

# with gr.Blocks(css="""
#     .container {
#         max-width: 900px;
#         margin: 0 auto;
#         padding: 20px;
#         background-color: rgba(255, 255, 255, 0.9);
#         border-radius: 15px;
#         box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
#     }
#     .gr-form { display: flex; flex-direction: column; align-items: center; }
#     .gr-box { width: 100%; max-width: 500px; }
#     .output-markdown, .output-image {
#         margin-top: 20px;
#         padding: 15px;
#         background-color: #f5f5f5;
#         border-radius: 10px;
#     }
#     .examples {
#         display: flex;
#         justify-content: center;
#         flex-wrap: wrap;
#         gap: 10px;
#         margin-top: 20px;
#     }
#     .examples img {
#         width: 100px;
#         height: 100px;
#         object-fit: cover;
#     }
#     """) as iface:

#     gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
#     gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
#     with gr.Row():
#         input_image = gr.Image(label="Upload a dog image", type="numpy")
#         output = gr.Markdown(label="Prediction Results")
    
#     with gr.Row():
#         btn1 = gr.Button("View More 1", visible=False)
#         btn2 = gr.Button("View More 2", visible=False)
#         btn3 = gr.Button("View More 3", visible=False)

#     input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
    
#     btn1.click(show_details, inputs=btn1, outputs=output)
#     btn2.click(show_details, inputs=btn2, outputs=output)
#     btn3.click(show_details, inputs=btn3, outputs=output)

#     gr.Examples(
#         examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
#         inputs=input_image
#     )

#     gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')

# # launch the program
# if __name__ == "__main__":
#     iface.launch()


def format_description(description, breed):
    if isinstance(description, dict):
        # 確保每一個描述項目換行顯示
        formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
    else:
        formatted_description = description

    akc_link = get_akc_breeds_link()
    formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

    disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
                  "You may need to search for the specific breed on that page. "
                  "I am not responsible for the content on external sites. "
                  "Please refer to the AKC's terms of use and privacy policy.*")
    formatted_description += disclaimer

    return formatted_description

async def predict_single_dog(image):
    return await asyncio.to_thread(_predict_single_dog, image)

def _predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
        topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
    return top1_prob, topk_breeds, topk_probs_percent

# async def detect_multiple_dogs(image, conf_threshold=0.3):
#     # 調整 YOLO 模型的置信度閾值
#     return await asyncio.to_thread(_detect_multiple_dogs, image, conf_threshold)

# def _detect_multiple_dogs(image, conf_threshold):
#     results = model_yolo(image, conf=conf_threshold)
#     dogs = []
#     for result in results:
#         for box in result.boxes:
#             if box.cls == 16:  # COCO 資料集中狗的類別是 16
#                 xyxy = box.xyxy[0].tolist()
#                 confidence = box.conf.item()
#                 if confidence >= conf_threshold:  # 只保留置信度高於閾值的框
#                     cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
#                     dogs.append((cropped_image, confidence, xyxy))
#     return dogs

# async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
#     results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
#     dogs = []
#     for box in results.boxes:
#         if box.cls == 16:  # COCO 資料集中狗的類別是 16
#             xyxy = box.xyxy[0].tolist()
#             confidence = box.conf.item()
#             cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
#             dogs.append((cropped_image, confidence, xyxy))
#     return dogs
# 此為如果後面調不好 使用的版本

async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
    results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
    dogs = []
    all_boxes = []
    
    # 首先收集所有可能的狗的邊界框
    for box in results.boxes:
        if box.cls == 16:  # COCO 資料集中狗的類別是 16
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            all_boxes.append((xyxy, confidence))
    
    # 按置信度排序
    all_boxes.sort(key=lambda x: x[1], reverse=True)
    
    # 應用非最大抑制
    for box, confidence in all_boxes:
        if not is_box_overlapping(box, [d[2] for d in dogs], iou_threshold):
            cropped_image = image.crop((box[0], box[1], box[2], box[3]))
            dogs.append((cropped_image, confidence, box))
    
    # 如果沒有檢測到狗,嘗試降低閾值再次檢測
    if len(dogs) == 0:
        results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
        for box in results.boxes:
            if box.cls == 16:
                xyxy = box.xyxy[0].tolist()
                confidence = box.conf.item()
                cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
                dogs.append((cropped_image, confidence, xyxy))
    
    return dogs

def is_box_overlapping(box, existing_boxes, iou_threshold):
    for existing_box in existing_boxes:
        if calculate_iou(box, existing_box) > iou_threshold:
            return True
    return False

def calculate_iou(box1, box2):
    # 計算兩個邊界框的交集面積
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    
    iou = intersection / float(area1 + area2 - intersection)
    return iou


# async def predict(image):
#     if image is None:
#         return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#     try:
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)

#         # 嘗試檢測多隻狗
#         dogs = await detect_multiple_dogs(image)
#         if len(dogs) == 0:
#             # 單狗情境
#             top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
#             if top1_prob < 0.2:
#                 return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#             breed = topk_breeds[0]
#             description = get_dog_description(breed)

#             if top1_prob >= 0.5:
#                 formatted_description = format_description(description, breed)
#                 return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
#             else:
#                 explanation = (
#                     f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
#                     f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
#                     f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
#                     f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
#                     "Click on a button to view more information about the breed."
#                 )
#                 return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")

#         # 多狗情境
#         color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
#         explanations = []
#         annotated_image = image.copy()
#         draw = ImageDraw.Draw(annotated_image)
#         font = ImageFont.load_default()

#         for i, (cropped_image, _, box) in enumerate(dogs):
#             top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
#             color = color_list[i % len(color_list)]
#             draw.rectangle(box, outline=color, width=3)
#             draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)

#             breed = topk_breeds[0]
#             if top1_prob >= 0.5:
#                 description = get_dog_description(breed)
#                 formatted_description = format_description(description, breed)
#                 explanations.append(f"Dog {i+1}: {formatted_description}")
#             elif top1_prob >= 0.2:
#                 explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
#                                     f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
#                                     f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
#                                     f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
#             else:
#                 explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")

#         final_explanation = "\n\n".join(explanations)
#         return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#     except Exception as e:
#         return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

# def show_details(choice):
#     if not choice:
#         return "Please select a breed to view details."

#     try:
#         breed = choice.split("More about ")[-1]
#         description = get_dog_description(breed)
#         return format_description(description, breed)
#     except Exception as e:
#         return f"An error occurred while showing details: {e}"


# with gr.Blocks() as iface:
#     gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
#     gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
#     with gr.Row():
#         input_image = gr.Image(label="Upload a dog image", type="pil")
#         output_image = gr.Image(label="Annotated Image")
    
#     output = gr.Markdown(label="Prediction Results")
    
#     with gr.Row():
#         btn1 = gr.Button("View More 1", visible=False)
#         btn2 = gr.Button("View More 2", visible=False)
#         btn3 = gr.Button("View More 3", visible=False)

#     input_image.change(
#         predict,
#         inputs=input_image,
#         outputs=[output, output_image, btn1, btn2, btn3]
#     )

#     btn1.click(show_details, inputs=btn1, outputs=output)
#     btn2.click(show_details, inputs=btn2, outputs=output)
#     btn3.click(show_details, inputs=btn3, outputs=output)

#     gr.Examples(
#         examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
#         inputs=input_image
#     )

#     gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')

# if __name__ == "__main__":
#     iface.launch()


async def predict(image):
    if image is None:
        return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        dogs = await detect_multiple_dogs(image, conf_threshold=0.05, iou_threshold=0.45)
        
        if len(dogs) == 0:
            # 沒有檢測到狗,使用原始圖像進行單狗處理
            return await process_single_dog(image)
        elif len(dogs) == 1:
            # 只檢測到一隻狗,使用裁剪後的圖像進行處理
            return await process_single_dog(dogs[0][0])
        else:
            # 多狗情境
            color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
            explanations = []
            buttons = []
            annotated_image = image.copy()
            draw = ImageDraw.Draw(annotated_image)
            font = ImageFont.load_default()

            for i, (cropped_image, confidence, box) in enumerate(dogs):
                top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
                color = color_list[i % len(color_list)]
                draw.rectangle(box, outline=color, width=3)
                draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)

                breed = topk_breeds[0]
                if top1_prob >= 0.5:
                    description = get_dog_description(breed)
                    formatted_description = format_description(description, breed)
                    explanations.append(f"Dog {i+1}: {formatted_description}")
                elif top1_prob >= 0.2:
                    dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
                    dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
                    explanations.append(dog_explanation)
                    buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
                else:
                    explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")

            final_explanation = "\n\n".join(explanations)
            if buttons:
                final_explanation += "\n\nClick on a button to view more information about the breed."
                initial_state = {
                    "explanation": final_explanation,
                    "buttons": buttons,
                    "show_back": True
                }
                return (final_explanation, annotated_image, 
                        buttons[0] if len(buttons) > 0 else gr.update(visible=False),
                        buttons[1] if len(buttons) > 1 else gr.update(visible=False),
                        buttons[2] if len(buttons) > 2 else gr.update(visible=False),
                        gr.update(visible=True),
                        initial_state)
            else:
                initial_state = {
                    "explanation": final_explanation,
                    "buttons": [],
                    "show_back": False
                }
                return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        print(error_msg)  # 添加日誌輸出
        return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None

async def process_single_dog(image):
    top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
    if top1_prob < 0.2:
        initial_state = {
            "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
            "buttons": [],
            "show_back": False
        }
        return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state

    breed = topk_breeds[0]
    description = get_dog_description(breed)

    if top1_prob >= 0.5:
        formatted_description = format_description(description, breed)
        initial_state = {
            "explanation": formatted_description,
            "buttons": [],
            "show_back": False
        }
        return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
    else:
        explanation = (
            f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
            f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
            f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
            f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
            "Click on a button to view more information about the breed."
        )
        buttons = [
            gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
            gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
            gr.update(visible=True, value=f"More about {topk_breeds[2]}")
        ]
        initial_state = {
            "explanation": explanation,
            "buttons": buttons,
            "show_back": True
        }
        return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state

def show_details(choice, previous_output, initial_state):
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        formatted_description = format_description(description, breed)
        return formatted_description, gr.update(visible=True), initial_state
    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)  # 添加日誌輸出
        return error_msg, gr.update(visible=True), initial_state

# 介面部分
with gr.Blocks() as iface:
    gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
    gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
    with gr.Row():
        input_image = gr.Image(label="Upload a dog image", type="pil")
        output_image = gr.Image(label="Annotated Image")
    
    output = gr.Markdown(label="Prediction Results")
    
    with gr.Row():
        btn1 = gr.Button("View More 1", visible=False)
        btn2 = gr.Button("View More 2", visible=False)
        btn3 = gr.Button("View More 3", visible=False)
    
    back_button = gr.Button("Back", visible=False)
    
    initial_state = gr.State()
    
    input_image.change(
        predict,
        inputs=input_image,
        outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
    )

    for btn in [btn1, btn2, btn3]:
        btn.click(
            show_details,
            inputs=[btn, output, initial_state],
            outputs=[output, back_button, initial_state]
        )

    back_button.click(
        lambda state: (state["explanation"], 
                       state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
                       state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
                       state["buttons"][2] if len(state["buttons"]) > 2 else gr.update(visible=False),
                       gr.update(visible=state["show_back"])),
        inputs=[initial_state],
        outputs=[output, btn1, btn2, btn3, back_button]
    )

    gr.Examples(
        examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
        inputs=input_image
    )

    gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')


if __name__ == "__main__":
    iface.launch()