File size: 17,743 Bytes
f4e5d86
 
 
6045345
bdbca8f
6045345
125cccb
6045345
ffd1043
6045345
 
1edc30c
3355706
88e17ff
39a208c
 
 
 
3355706
39a208c
88e17ff
 
39a208c
2bc1a5b
cb9797e
e303d64
125cccb
6045345
553a86b
 
6045345
125cccb
 
 
 
 
 
37293dc
6045345
efb3b2c
2bb0b78
47d601f
efb3b2c
47d601f
 
2bb0b78
 
 
efb3b2c
 
 
 
 
 
 
 
 
 
 
 
32e6fe9
71bd062
 
 
 
 
4c37bd0
71bd062
 
 
 
cb9797e
 
32e6fe9
e029ab3
 
 
 
 
32e6fe9
 
 
 
 
f4e5d86
 
32e6fe9
 
 
 
 
 
6045345
125cccb
 
 
 
f4e5d86
7181022
f4e5d86
7181022
 
 
6045345
 
 
 
55b8542
125cccb
312a9fa
 
 
6045345
553a86b
06edf17
55b8542
6cb2310
2bc1a5b
 
 
553a86b
8746b70
55b8542
06edf17
6cb2310
553a86b
6cb2310
55b8542
919727b
55b8542
919727b
55b8542
 
553a86b
919727b
55b8542
919727b
e44c9e0
6045345
a03a7d7
 
 
 
 
553a86b
a03a7d7
 
1687be6
 
 
125cccb
2bb0b78
 
 
 
 
 
3b4d055
69a2350
 
3355706
 
a94f9cb
3355706
 
 
 
 
1987e5c
3b4d055
 
 
 
96deb6b
3b4d055
 
 
6045345
3355706
563b6d8
919727b
919246f
 
 
b521206
919246f
 
b521206
9190ada
 
2520ecd
094fc2c
9190ada
e8aacfb
96deb6b
3b4d055
9190ada
1d5ab84
 
 
 
 
 
 
56f9ca5
1d5ab84
56f9ca5
1d5ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69da99
3355706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f5e41
e2e68c3
 
f4e5d86
e2e68c3
4ac9e25
 
136522f
 
 
 
 
4ac9e25
553a86b
7f09106
136522f
 
7f09106
 
 
553a86b
94f5e41
 
e2e68c3
094fc2c
6dfdd2d
e8aacfb
96deb6b
f4e5d86
3b4d055
94f5e41
f4e5d86
553a86b
6045345
 
553a86b
6045345
 
094fc2c
6dfdd2d
88e17ff
96deb6b
f4e5d86
3b4d055
6045345
 
1066751
 
 
 
 
bdbca8f
aa3c3f9
c9a149f
136522f
 
5b67ea9
c9a149f
553a86b
5b67ea9
ab5cd28
 
 
e303d64
 
 
0b7ba57
 
 
 
 
 
 
 
98bf76e
3355706
 
7b5e762
553a86b
3355706
 
fe0b768
 
 
f319b0b
6045345
f311df9
 
1991946
3a011ea
f311df9
 
 
 
 
0b7ba57
 
0c96727
6045345
94f5e41
6045345
 
ce34d64
 
 
3355706
ce34d64
42410c7
 
 
cfcc549
 
ad2b48c
247825b
 
 
 
 
553a86b
bdbca8f
ad2b48c
1edc30c
 
 
7b55fe6
 
 
6045345
32e6fe9
6045345
 
125cccb
 
6045345
 
 
176b888
 
7b5e762
125cccb
2255bb7
 
6045345
 
 
 
2255bb7
8bd7a49
37293dc
2255bb7
 
 
 
 
 
 
1d5ab84
ee26281
2255bb7
 
 
 
 
 
 
 
 
 
 
 
 
267b7b2
 
ffd1043
 
 
 
 
 
 
 
 
 
 
 
125cccb
 
6045345
37293dc
6045345
4c90633
9196237
 
267b7b2
553a86b
9196237
6045345
2255bb7
 
 
ffd1043
2255bb7
 
2c73c81
2255bb7
 
 
6045345
2255bb7
ee26281
2255bb7
 
 
125cccb
2255bb7
 
 
6045345
2255bb7
6045345
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
"""Module for models and model loading"""


import logging
import math
import os
from typing import Optional, Tuple  # noqa: F401

import bitsandbytes as bnb
import torch
import transformers
from optimum.bettertransformer import BetterTransformer
from peft import PeftConfig, prepare_model_for_kbit_training
from transformers import (  # noqa: F401
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    GPTQConfig,
    LlamaConfig,
    PreTrainedModel,
    PreTrainedTokenizerBase,
)

from axolotl.prompt_tokenizers import LLAMA_DEFAULT_EOS_TOKEN
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.dict import DictDefault

LOG = logging.getLogger("axolotl")


def load_model_config(cfg):
    model_config_name = cfg.base_model_config or cfg.base_model
    trust_remote_code: bool = False or cfg.trust_remote_code
    return AutoConfig.from_pretrained(
        model_config_name, trust_remote_code=trust_remote_code
    )


def load_tokenizer(cfg):
    tokenizer_kwargs = {}
    use_fast = True  # this is the default

    if cfg.tokenizer_use_fast is not None:
        use_fast = cfg.tokenizer_use_fast
    if cfg.tokenizer_legacy is not None:
        # True is the default w/ https://github.com/huggingface/transformers/pull/25224
        tokenizer_kwargs["legacy"] = cfg.tokenizer_legacy

    tokenizer_cls = AutoTokenizer
    if cfg.tokenizer_type:
        tokenizer_cls = getattr(transformers, cfg.tokenizer_type)

    tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
    tokenizer = tokenizer_cls.from_pretrained(
        tokenizer_config,
        trust_remote_code=cfg.trust_remote_code or False,
        use_fast=use_fast,
        **tokenizer_kwargs,
    )

    if (
        tokenizer.__class__.__name__
        in [
            "LlamaTokenizer",
            "LlamaTokenizerFast",
            "CodeLlamaTokenizer",
        ]
        and hasattr(tokenizer, "pad_token")
        and not tokenizer.pad_token
    ):
        # set a pad_token, but use eos_token so we don't add a new token
        tokenizer.pad_token = LLAMA_DEFAULT_EOS_TOKEN

    LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
    LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
    LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
    LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")

    if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})
        os.environ["TOKENIZERS_PARALLELISM"] = "false"

    if cfg.special_tokens:
        for k, val in cfg.special_tokens.items():
            tokenizer.add_special_tokens({k: val})
    if cfg.tokens:
        tokenizer.add_tokens(list(cfg.tokens))

    return tokenizer


def load_model(
    cfg: DictDefault,
    tokenizer: PreTrainedTokenizerBase,
    inference: bool = False,
) -> Tuple[PreTrainedModel, Optional[PeftConfig]]:
    """
    Load a model for a given configuration and tokenizer.
    """
    base_model = cfg.base_model
    base_model_config = cfg.base_model_config
    model_type = cfg.model_type

    # TODO refactor as a kwarg
    load_in_8bit = cfg.load_in_8bit

    if cfg.is_llama_derived_model and cfg.flash_attention:
        if cfg.device not in ["mps", "cpu"] and not inference:
            from axolotl.monkeypatch.llama_attn_hijack_flash import (
                replace_llama_attn_with_flash_attn,
            )

            LOG.info("patching with flash attention")
            replace_llama_attn_with_flash_attn(packed=cfg.sample_packing)
    elif cfg.is_llama_derived_model and cfg.xformers_attention:
        from axolotl.monkeypatch.llama_attn_hijack_xformers import (
            hijack_llama_attention,
        )

        LOG.info("patching with xformers attention")
        hijack_llama_attention()
    elif cfg.is_llama_derived_model and cfg.sdp_attention:
        from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention

        LOG.info("patching with sdp attention")
        hijack_llama_sdp_attention()
    elif cfg.is_llama_derived_model and cfg.landmark_attention:
        from axolotl.monkeypatch.llama_landmark_attn import (
            MEM_TOKEN,
            patch_llama_with_landmark_attn,
        )

        LOG.info("patching with landmark attention")
        patch_llama_with_landmark_attn()

        # Note: This might overwrite previous additional_special_tokens
        tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})

    if cfg.is_llama_derived_model and cfg.xpos_rope:
        from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
            replace_llama_rope_with_xpos_rope,
        )

        LOG.info("patching with xpos rope")
        replace_llama_rope_with_xpos_rope()

    if (
        cfg.is_llama_derived_model
        and (cfg.max_packed_sequence_len or cfg.sample_packing)
        and not inference
    ):
        from axolotl.monkeypatch.llama_expand_mask import hijack_expand_mask

        LOG.info("patching _expand_mask")
        hijack_expand_mask()

    model_kwargs = {}
    if cfg.model_revision:
        model_kwargs["revision"] = cfg.model_revision
    if cfg.gptq:
        model_config = load_model_config(cfg)
        if not hasattr(model_config, "quantization_config"):
            LOG.warning("model config does not contain quantization_config information")
        else:
            model_kwargs["quantization_config"] = GPTQConfig(
                **model_config.quantization_config
            )
    if cfg.adapter == "qlora" and cfg.load_in_4bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=cfg.torch_dtype,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    try:
        if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
            from transformers import LlamaForCausalLM

            config_kwargs = {}
            if cfg.rope_scaling:
                config_kwargs["rope_scaling"] = cfg.rope_scaling
            config = LlamaConfig.from_pretrained(
                base_model_config,
                **config_kwargs,
            )
            model = LlamaForCausalLM.from_pretrained(
                base_model,
                config=config,
                device_map=cfg.device_map,
                load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
                load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
                torch_dtype=cfg.torch_dtype,
                **model_kwargs,
            )
        # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
        #     This is a WIP, still an issue with the backward pass
        #     RuntimeError: grad can be implicitly created only for scalar outputs
        #     TODO: try config.sequence_parallel = False
        #     # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12
        #     # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components
        #     # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442
        #     from flash_attn.utils.pretrained import state_dict_from_pretrained
        #     from flash_attn.models.gpt import GPTLMHeadModel
        #     from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
        #     from transformers import GPTNeoXConfig
        #     config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model))
        #     config.use_flash_attn = True
        #     config.fused_bias_fc = True
        #     config.fused_mlp = True  # GPT-NeoX-20B uses "gelu_fast"
        #     config.activation_function = "gelu_fast"
        #     config.fused_dropout_add_ln = True
        #     # config.residual_in_fp32 = True
        #
        #     model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained(
        #         base_model,
        #         config,
        #         dtype=torch_dtype,
        #         device=cfg.device,
        #     )
        #     model.train() # sets to train instead of eval mode
        elif model_type and not cfg.trust_remote_code:
            if cfg.gptq:
                model = AutoModelForCausalLM.from_pretrained(
                    base_model,
                    device_map=cfg.device_map,
                    torch_dtype=cfg.torch_dtype,
                    trust_remote_code=cfg.trust_remote_code or False,
                    **model_kwargs,
                )
            else:
                model = getattr(transformers, model_type).from_pretrained(
                    base_model,
                    device_map=cfg.device_map,
                    load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
                    load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
                    torch_dtype=cfg.torch_dtype,
                    trust_remote_code=cfg.trust_remote_code or False,
                    **model_kwargs,
                )
        else:
            config = AutoConfig.from_pretrained(
                base_model,
                trust_remote_code=cfg.trust_remote_code or False,
            )
            # Shouldn't be a problem most of the time. will obviously error if the model doesn't support this
            # when training starts
            if (
                hasattr(config, "max_seq_len")
                and config.max_seq_len
                and cfg.sequence_len > config.max_seq_len
            ):
                config.max_seq_len = cfg.sequence_len
                LOG.warning(f"increasing context length to {cfg.sequence_len}")
            elif (
                hasattr(config, "max_sequence_length")
                and config.max_sequence_length
                and cfg.sequence_len > config.max_sequence_length
            ):
                config.max_sequence_length = cfg.sequence_len
                LOG.warning(f"increasing context length to {cfg.sequence_len}")
            model = AutoModelForCausalLM.from_pretrained(
                base_model,
                config=config,
                device_map=cfg.device_map,
                load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
                load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
                torch_dtype=cfg.torch_dtype,
                trust_remote_code=cfg.trust_remote_code or False,
                **model_kwargs,
            )
    except Exception as err:  # pylint: disable=broad-exception-caught
        LOG.error(
            "Exception raised attempting to load model, retrying with AutoModelForCausalLM"
        )
        LOG.exception(err)
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            device_map=cfg.device_map,
            load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
            load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
            torch_dtype=cfg.torch_dtype,
            trust_remote_code=cfg.trust_remote_code or False,
            **model_kwargs,
        )

    embeddings_len = (
        math.ceil(len(tokenizer) / 32) * 32
        if cfg.resize_token_embeddings_to_32x
        else len(tokenizer)
    )
    model.resize_token_embeddings(embeddings_len)

    if (
        hasattr(model.config, "max_position_embeddings")
        and model.config.max_position_embeddings
        and cfg.sequence_len > model.config.max_position_embeddings
    ):
        LOG.warning(
            f"increasing model.config.max_position_embeddings from {model.config.max_position_embeddings} to {cfg.sequence_len}"
        )
        model.config.max_position_embeddings = cfg.sequence_len

    if model.device.type == "cuda":
        log_gpu_memory_usage(LOG, "after model load", model.device)

    # make sure these are fp32 per Ramesh et al. (2021)
    for name, module in model.named_modules():
        if "norm" in name:
            module.to(torch.float32)
        if "lm_head" in name or "embed_tokens" in name:
            if hasattr(module, "weight"):
                module.to(torch.float32)

    needs_fa2_dtype = cfg.adapter or cfg.fsdp
    if (cfg.adapter == "lora" and load_in_8bit) or (
        cfg.adapter == "qlora" and cfg.load_in_4bit
    ):
        LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
        if cfg.gradient_checkpointing:
            model.gradient_checkpointing_enable()
        model = prepare_model_for_kbit_training(
            model, use_gradient_checkpointing=cfg.gradient_checkpointing
        )
        needs_fa2_dtype = True

    # LlamaRMSNorm layers are in fp32 after kbit_training or full finetune, so we need to
    # convert them back to fp16/bf16 for flash-attn compatibility.
    if needs_fa2_dtype or (cfg.flash_attention and cfg.is_llama_derived_model):
        LOG.info("converting modules to %s for flash attention", cfg.torch_dtype)
        for name, module in model.named_modules():
            if "norm" in name:
                module.to(cfg.torch_dtype)
            if "lm_head" in name or "embed_tokens" in name:
                if hasattr(module, "weight"):
                    module.to(cfg.torch_dtype)

    model, lora_config = load_adapter(model, cfg, cfg.adapter)

    if cfg.ddp and not load_in_8bit:
        model.to(f"cuda:{cfg.local_rank}")

    if (
        torch.cuda.device_count() > 1
        and int(os.getenv("WORLD_SIZE", "1")) > 1
        and (cfg.load_in_4bit)
    ):
        # llama is PROBABLY model parallelizable, but the default isn't that it is
        # so let's only set it for the 4bit, see
        # https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
        setattr(model, "is_parallelizable", True)
        setattr(model, "model_parallel", True)

    requires_grad = []
    for name, param in model.named_parameters(recurse=True):
        if param.requires_grad:
            requires_grad.append(f"{name}: {param.requires_grad}")
    if len(requires_grad) == 0:
        LOG.warning("there are no parameters that require gradient updates")
    model.config.use_cache = False

    if cfg.flash_optimum:
        model = BetterTransformer.transform(model)

    if cfg.adapter is not None:
        log_gpu_memory_usage(LOG, "after adapters", model.device)

    # TODO resume_from_checkpoint handling
    return model, lora_config


def load_adapter(model, cfg, adapter, inference=False):
    # type: (PreTrainedModel, DictDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]

    if adapter is None:
        return model, None
    if hasattr(model, "enable_input_require_grads"):
        model.enable_input_require_grads()
    if adapter in ["lora", "qlora"]:
        return load_lora(model, cfg, inference=inference)
    if adapter == "llama-adapter":
        return load_llama_adapter(model, cfg)

    raise NotImplementedError(f"{adapter} peft adapter not available")


def load_llama_adapter(model, cfg):
    # type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
    from peft import AdaptionPromptConfig, PeftModel, get_peft_model

    peft_config = AdaptionPromptConfig(
        adapter_layers=cfg.peft_adapter.layers,  # layers (L)
        adapter_len=cfg.peft_adapter.len,  # prompt length (K)
        task_type="CAUSAL_LM",
    )

    if cfg.lora_model_dir:
        LOG.debug("Loading pretained PEFT - llama_adapter")
        model = PeftModel.from_pretrained(
            model,
            cfg.lora_model_dir,
            torch_dtype=torch.float16,
        )
    else:
        model = get_peft_model(model, peft_config)

    model.print_trainable_parameters()

    return model, peft_config


def find_all_linear_names(model):
    cls = (bnb.nn.Linear4bit, bnb.nn.Linear8bitLt, torch.nn.Linear)
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split(".")
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if "lm_head" in lora_module_names:  # needed for 16-bit
        lora_module_names.remove("lm_head")

    return list(lora_module_names)


def load_lora(model, cfg, inference=False):
    # type: (PreTrainedModel, DictDefault, bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]

    from peft import LoraConfig, PeftModel, get_peft_model

    lora_target_modules = list(cfg.lora_target_modules or [])

    if cfg.lora_target_linear:
        linear_names = find_all_linear_names(model)
        LOG.info(f"found linear modules: {repr(linear_names)}")
        lora_target_modules = list(set(lora_target_modules + linear_names))

    lora_config = LoraConfig(
        r=cfg.lora_r,
        lora_alpha=cfg.lora_alpha,
        target_modules=lora_target_modules,
        lora_dropout=cfg.lora_dropout,
        fan_in_fan_out=cfg.lora_fan_in_fan_out,
        modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
        bias="none",
        task_type="CAUSAL_LM",
    )

    if cfg.lora_model_dir:
        LOG.debug("Loading pretained PEFT - LoRA")
        model = PeftModel.from_pretrained(
            model,
            cfg.lora_model_dir,
            is_trainable=(not inference),
        )
    else:
        model = get_peft_model(model, lora_config)

    model.print_trainable_parameters()

    return model, lora_config