Spaces:
Running
Running
File size: 16,185 Bytes
e93c659 0d0c645 e93c659 3488e95 105bca0 e93c659 3c85094 e93c659 aaf258e 0d0c645 aaf258e 6a7c0e6 aaf258e 2f35b39 306ab4d cb692e5 dfc8b26 0d0c645 83a2e73 e93c659 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 fcd198b dd69d15 3488e95 fcd198b dd69d15 3488e95 fcd198b dd69d15 99d52d8 fcd198b dd69d15 cf2d407 3488e95 cf2d407 3488e95 c0e089e a5afc1a 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 adf804d 66c57f6 c0e089e adf804d 66c57f6 c0e089e 66c57f6 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 0d0c645 83a2e73 e93c659 83a2e73 e93c659 83a2e73 e93c659 83a2e73 0d0c645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import tiger
import cas9on
import cas9off
import pandas as pd
import streamlit as st
from pygenomeviz import Genbank, GenomeViz
import numpy as np
from pathlib import Path
# title and documentation
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
st.divider()
CRISPR_MODELS = ['Cas9', 'Cas12', 'Cas13d']
selected_model = st.selectbox('Select CRISPR model:', CRISPR_MODELS, key='selected_model')
cas9on_path = 'cas9_model/on-cla.h5'
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
def mode_change_callback():
if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}: # TODO: support titration
st.session_state.check_off_targets = False
st.session_state.disable_off_target_checkbox = True
else:
st.session_state.disable_off_target_checkbox = False
def progress_update(update_text, percent_complete):
with progress.container():
st.write(update_text)
st.progress(percent_complete / 100)
def initiate_run():
# initialize state variables
st.session_state.transcripts = None
st.session_state.input_error = None
st.session_state.on_target = None
st.session_state.titration = None
st.session_state.off_target = None
# initialize transcript DataFrame
transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL])
# manual entry
if st.session_state.entry_method == ENTRY_METHODS['manual']:
transcripts = pd.DataFrame({
tiger.ID_COL: ['ManualEntry'],
tiger.SEQ_COL: [st.session_state.manual_entry]
}).set_index(tiger.ID_COL)
# fasta file upload
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
if st.session_state.fasta_entry is not None:
fasta_path = st.session_state.fasta_entry.name
with open(fasta_path, 'w') as f:
f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
os.remove(fasta_path)
# convert to upper case as used by tokenizer
transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T'))
# ensure all transcripts have unique identifiers
if transcripts.index.has_duplicates:
st.session_state.input_error = "Duplicate transcript ID's detected in fasta file"
# ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N
elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))):
st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us'
# ensure all transcripts satisfy length requirements
elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)):
st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN)
# run model if we have any transcripts
elif len(transcripts) > 0:
st.session_state.transcripts = transcripts
# Check if the selected model is Cas9
if selected_model == 'Cas9':
# Use a radio button to select enzymes, making sure only one can be selected at a time
target_selection = st.radio(
"Select either on-target or off-target:",
('on-target', 'off-target'),
key='target_selection'
)
if target_selection == 'on-target':
# Gene symbol entry
gene_symbol = st.text_input('Enter a Gene Symbol:', key='gene_symbol')
# Prediction button
predict_button = st.button('Predict on-target')
# Process predictions
if predict_button and gene_symbol:
predictions, gene_sequence = cas9on.process_gene(gene_symbol, cas9on_path)
sorted_predictions = sorted(predictions, key=lambda x: x[-1], reverse=True)[:10]
st.session_state['on_target_results'] = sorted_predictions
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
df = pd.DataFrame(st.session_state['on_target_results'],
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])
if gene_sequence: # Ensure gene_sequence is not empty
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
cas9on.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
st.write('Top on-target predictions:')
st.dataframe(df)
# Add a download button for the GenBank file
with open(genbank_file_path, "rb") as file:
st.download_button(
label="Download GenBank File",
data=file,
file_name=genbank_file_path,
mime="text/x-genbank"
)
# Visualize the GenBank file using pyGenomeViz
gv = GenomeViz(
feature_track_ratio=0.3,
tick_track_ratio=0.5,
tick_style="axis",
)
gbk = Genbank(genbank_file_path)
track = gv.add_feature_track(gbk.name, gbk.range_size)
track.add_genbank_features(gbk)
fig = gv.plotfig()
st.pyplot(fig)
# Clean up the GenBank file after visualization
os.remove(genbank_file_path)
elif target_selection == 'off-target':
ENTRY_METHODS = dict(
manual='Manual entry of target sequence',
txt="txt file upload"
)
if __name__ == '__main__':
# app initialization for Cas9 off-target
if 'target_sequence' not in st.session_state:
st.session_state.target_sequence = None
if 'input_error' not in st.session_state:
st.session_state.input_error = None
if 'off_target_results' not in st.session_state:
st.session_state.off_target_results = None
# target sequence entry
st.selectbox(
label='How would you like to provide target sequences?',
options=ENTRY_METHODS.values(),
key='entry_method',
disabled=st.session_state.target_sequence is not None
)
if st.session_state.entry_method == ENTRY_METHODS['manual']:
st.text_input(
label='Enter on/off sequences:',
key='manual_entry',
placeholder='Enter on/off sequences like:GGGTGGGGGGAGTTTGCTCCAGG,AGGTGGGGTGA_TTTGCTCCAGG',
disabled=st.session_state.target_sequence is not None
)
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
st.file_uploader(
label='Upload a txt file:',
key='txt_entry',
disabled=st.session_state.target_sequence is not None
)
# prediction button
if st.button('Predict off-target'):
if st.session_state.entry_method == ENTRY_METHODS['manual']:
user_input = st.session_state.manual_entry
if user_input: # Check if user_input is not empty
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
uploaded_file = st.session_state.txt_entry
if uploaded_file is not None:
# Read the uploaded file content
file_content = uploaded_file.getvalue().decode("utf-8")
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
st.session_state.off_target_results = predictions
else:
predictions = None
progress = st.empty()
# input error display
error = st.empty()
if st.session_state.input_error is not None:
error.error(st.session_state.input_error, icon="🚨")
else:
error.empty()
# off-target results display
off_target_results = st.empty()
if st.session_state.off_target_results is not None:
with off_target_results.container():
if len(st.session_state.off_target_results) > 0:
st.write('Off-target predictions:', st.session_state.off_target_results)
st.download_button(
label='Download off-target predictions',
data=convert_df(st.session_state.off_target_results),
file_name='off_target_results.csv',
mime='text/csv'
)
else:
st.write('No significant off-target effects detected!')
else:
off_target_results.empty()
# running the CRISPR-Net model for off-target predictions
if st.session_state.target_sequence is not None:
st.session_state.off_target_results = cas9off.predict_off_targets(
target_sequence=st.session_state.target_sequence,
status_update_fn=progress_update
)
st.session_state.target_sequence = None
st.experimental_rerun()
elif selected_model == 'Cas12':
# Placeholder for Cas12 model loading
# TODO: Implement Cas12 model loading logic
raise NotImplementedError("Cas12 model loading not implemented yet.")
elif selected_model == 'Cas13d':
ENTRY_METHODS = dict(
manual='Manual entry of single transcript',
fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
)
if __name__ == '__main__':
# app initialization
if 'mode' not in st.session_state:
st.session_state.mode = tiger.RUN_MODES['all']
st.session_state.disable_off_target_checkbox = True
if 'entry_method' not in st.session_state:
st.session_state.entry_method = ENTRY_METHODS['manual']
if 'transcripts' not in st.session_state:
st.session_state.transcripts = None
if 'input_error' not in st.session_state:
st.session_state.input_error = None
if 'on_target' not in st.session_state:
st.session_state.on_target = None
if 'titration' not in st.session_state:
st.session_state.titration = None
if 'off_target' not in st.session_state:
st.session_state.off_target = None
# mode selection
col1, col2 = st.columns([0.65, 0.35])
with col1:
st.radio(
label='What do you want to predict?',
options=tuple(tiger.RUN_MODES.values()),
key='mode',
on_change=mode_change_callback,
disabled=st.session_state.transcripts is not None,
)
with col2:
st.checkbox(
label='Find off-target effects (slow)',
key='check_off_targets',
disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None
)
# transcript entry
st.selectbox(
label='How would you like to provide transcript(s) of interest?',
options=ENTRY_METHODS.values(),
key='entry_method',
disabled=st.session_state.transcripts is not None
)
if st.session_state.entry_method == ENTRY_METHODS['manual']:
st.text_input(
label='Enter a target transcript:',
key='manual_entry',
placeholder='Upper or lower case',
disabled=st.session_state.transcripts is not None
)
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
st.file_uploader(
label='Upload a fasta file:',
key='fasta_entry',
disabled=st.session_state.transcripts is not None
)
# let's go!
st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None)
progress = st.empty()
# input error
error = st.empty()
if st.session_state.input_error is not None:
error.error(st.session_state.input_error, icon="🚨")
else:
error.empty()
# on-target results
on_target_results = st.empty()
if st.session_state.on_target is not None:
with on_target_results.container():
st.write('On-target predictions:', st.session_state.on_target)
st.download_button(
label='Download on-target predictions',
data=convert_df(st.session_state.on_target),
file_name='on_target.csv',
mime='text/csv'
)
else:
on_target_results.empty()
# titration results
titration_results = st.empty()
if st.session_state.titration is not None:
with titration_results.container():
st.write('Titration predictions:', st.session_state.titration)
st.download_button(
label='Download titration predictions',
data=convert_df(st.session_state.titration),
file_name='titration.csv',
mime='text/csv'
)
else:
titration_results.empty()
# off-target results
off_target_results = st.empty()
if st.session_state.off_target is not None:
with off_target_results.container():
if len(st.session_state.off_target) > 0:
st.write('Off-target predictions:', st.session_state.off_target)
st.download_button(
label='Download off-target predictions',
data=convert_df(st.session_state.off_target),
file_name='off_target.csv',
mime='text/csv'
)
else:
st.write('We did not find any off-target effects!')
else:
off_target_results.empty()
# keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns)
if st.session_state.transcripts is not None:
st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit(
transcripts=st.session_state.transcripts,
mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
check_off_targets=st.session_state.check_off_targets,
status_update_fn=progress_update
)
st.session_state.transcripts = None
st.experimental_rerun()
|