File size: 9,224 Bytes
9dc639f
 
74221f2
9dc639f
1eb0002
293661c
 
9dc639f
 
 
 
 
1eb0002
293661c
53b33ac
 
 
 
 
 
 
 
fc48f50
db87ae8
293661c
db87ae8
78bd826
c947e4c
 
 
1eb0002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726773c
 
 
 
 
 
 
 
 
 
e8182c5
864c041
74221f2
1eb0002
 
 
 
 
 
 
 
74221f2
1eb0002
 
 
 
 
 
 
 
 
 
 
74221f2
1eb0002
54fafa1
1eb0002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0739e4
1eb0002
 
 
db87ae8
19fdb92
1eb0002
 
 
 
 
19fdb92
1eb0002
 
 
 
19fdb92
1eb0002
 
 
 
0aef3aa
53b33ac
1eb0002
 
 
 
 
 
 
53b33ac
 
 
1eb0002
 
 
 
 
 
53b33ac
 
 
 
1eb0002
 
 
53b33ac
 
 
 
 
 
 
 
 
 
 
1eb0002
 
 
 
 
 
 
 
 
 
 
 
b0739e4
1eb0002
a684f83
 
1eb0002
 
 
 
19fdb92
e27c8c7
19fdb92
1eb0002
 
9dc639f
19fdb92
1eb0002
 
 
 
 
 
19fdb92
1eb0002
 
 
 
 
74221f2
1eb0002
 
fa78b18
3c486f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449be2c
fa78b18
449be2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import getpass
import spacy
import pandas as pd
from typing import Optional, List, Dict, Any
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
from pydantic import BaseModel, Field, ValidationError, validator
from mistralai import Mistral
from langchain.prompts import PromptTemplate

# Import chains and tools
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt

# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)

# Initialize LiteLLM model for web search
pydantic_agent = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))

# Pydantic models for validation and type safety
class QueryInput(BaseModel):
    query: str = Field(..., min_length=1, description="The input query string")
    
    @validator('query')
    def check_query_is_string(cls, v):
        if not isinstance(v, str):
            raise ValueError("Query must be a valid string")
        if v.strip() == "":
            raise ValueError("Query cannot be empty or just whitespace")
        return v.strip()

class ModerationResult(BaseModel):
    is_safe: bool = Field(..., description="Whether the content is safe")
    categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories")
    original_text: str = Field(..., description="The original input text")

# Load spaCy model for NER
def install_spacy_model():
    try:
        spacy.load("en_core_web_sm")
        print("spaCy model 'en_core_web_sm' is already installed.")
    except OSError:
        print("Downloading spaCy model 'en_core_web_sm'...")
        subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
        print("spaCy model 'en_core_web_sm' downloaded successfully.")

install_spacy_model()
nlp = spacy.load("en_core_web_sm")

def extract_main_topic(query: str) -> str:
    try:
        query_input = QueryInput(query=query)
        doc = nlp(query_input.query)
        main_topic = None
        
        for ent in doc.ents:
            if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
                main_topic = ent.text
                break
        
        if not main_topic:
            for token in doc:
                if token.pos_ in ["NOUN", "PROPN"]:
                    main_topic = token.text
                    break
        
        return main_topic if main_topic else "this topic"
    except Exception as e:
        print(f"Error extracting main topic: {e}")
        return "this topic"

def moderate_text(query: str) -> ModerationResult:
    try:
        query_input = QueryInput(query=query)
        
        response = client.classifiers.moderate_chat(
            model="mistral-moderation-latest",
            inputs=[{"role": "user", "content": query_input.query}]
        )
        
        is_safe = True
        categories = {}
        
        if hasattr(response, 'results') and response.results:
            categories = {
                "violence": response.results[0].categories.get("violence_and_threats", False),
                "hate": response.results[0].categories.get("hate_and_discrimination", False),
                "dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False),
                "selfharm": response.results[0].categories.get("selfharm", False)
            }
            is_safe = not any(categories.values())
        
        return ModerationResult(
            is_safe=is_safe,
            categories=categories,
            original_text=query_input.query
        )
    except ValidationError as e:
        raise ValueError(f"Input validation failed: {str(e)}")
    except Exception as e:
        raise RuntimeError(f"Moderation failed: {str(e)}")

def classify_query(query: str) -> str:
    try:
        query_input = QueryInput(query=query)
        
        wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
        if any(keyword in query_input.query.lower() for keyword in wellness_keywords):
            return "Wellness"
        
        class_result = classification_chain.invoke({"query": query_input.query})
        classification = class_result.get("text", "").strip()
        
        return classification if classification != "" else "OutOfScope"
    except ValidationError as e:
        raise ValueError(f"Classification input validation failed: {str(e)}")
    except Exception as e:
        raise RuntimeError(f"Classification failed: {str(e)}")

def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
    try:
        if os.path.exists(store_dir):
            print(f"Loading existing FAISS store from '{store_dir}'")
            embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
            return FAISS.load_local(store_dir, embeddings)
        
        print(f"Building new FAISS store from CSV: {csv_path}")
        df = pd.read_csv(csv_path)
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
        df.columns = df.columns.str.strip()
        
        docs = [
            Document(page_content=str(row["Answers"]), metadata={"question": str(row["Question"])})
            for _, row in df.iterrows()
        ]
        
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.from_documents(docs, embedding=embeddings)
        vectorstore.save_local(store_dir)
        return vectorstore
        
    except Exception as e:
        raise RuntimeError(f"Error building/loading vector store: {str(e)}")

def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
    class GeminiLangChainLLM(LLM):
        def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
            messages = [{"role": "user", "content": prompt}]
            return llm_model(messages, stop_sequences=stop)

        @property
        def _llm_type(self) -> str:
            return "custom_gemini"
    
    try:
        retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
        gemini_as_llm = GeminiLangChainLLM()
        return RetrievalQA.from_chain_type(
            llm=gemini_as_llm,
            chain_type="stuff",
            retriever=retriever,
            return_source_documents=True
        )
    except Exception as e:
        raise RuntimeError(f"Error building RAG chain: {str(e)}")

def run_pipeline(query: str) -> str:
    try:
        query = sanitize_message(query)
        
        moderation_result = moderate_text(query)
        if not moderation_result.is_safe:
            return "Sorry, this query contains harmful or inappropriate content."

        classification = classify_query(moderation_result.original_text)

        if classification == "OutOfScope":
            refusal_text = refusal_chain.run({"topic": "this topic"})
            return tailor_chain.run({"response": refusal_text}).strip()

        if classification == "Wellness":
            rag_result = wellness_rag_chain({"query": moderation_result.original_text})
            csv_answer = rag_result["result"].strip()
            web_answer = "" if csv_answer else do_web_search(moderation_result.original_text)
            final_merged = merge_responses(csv_answer, web_answer)
            return tailor_chain.run({"response": final_merged}).strip()

        if classification == "Brand":
            rag_result = brand_rag_chain({"query": moderation_result.original_text})
            csv_answer = rag_result["result"].strip()
            final_merged = merge_responses(csv_answer, "")
            return tailor_chain.run({"response": final_merged}).strip()

        refusal_text = refusal_chain.run({"topic": "this topic"})
        return tailor_chain.run({"response": refusal_text}).strip()

# Initialize chains and vectorstores
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()

wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"

wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)

gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)

print("Pipeline initialized successfully!")


def run_with_chain(query: str) -> str:
    return run_pipeline(query)