File size: 5,734 Bytes
d8b6286
68f6bb9
6d3bc8f
7d6a9ed
46b30ee
7d6a9ed
8a8a249
68f6bb9
3152b48
8a8a249
3152b48
 
 
 
 
 
 
 
 
 
 
307d4dd
 
 
 
 
3152b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307d4dd
 
 
 
3152b48
 
ceffe1d
46b30ee
 
 
 
e4591db
46b30ee
307d4dd
 
 
3152b48
46b30ee
 
 
 
 
 
 
 
 
 
 
 
d579519
46b30ee
3152b48
46b30ee
 
 
3152b48
 
 
 
d579519
 
 
 
3152b48
 
 
 
d579519
3152b48
e4591db
 
 
46b30ee
 
d579519
 
46b30ee
d579519
21019ce
46b30ee
307d4dd
46b30ee
 
307d4dd
0bca3ec
46b30ee
68f6bb9
913c46d
68f6bb9
46b30ee
68f6bb9
307d4dd
46b30ee
68f6bb9
3152b48
68f6bb9
dedd569
3152b48
68f6bb9
3152b48
6d3bc8f
46b30ee
68f6bb9
6d3bc8f
68f6bb9
3152b48
46b30ee
0bca3ec
68f6bb9
 
aa9a5ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import os
from pyannote.audio import Pipeline
from pydub import AudioSegment
import gradio as gr

# 获取 Hugging Face 认证令牌
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
pipeline = None

# 尝试加载 pyannote 模型
try:
    pipeline = Pipeline.from_pretrained(
        "pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    pipeline.to(device)
except Exception as e:
    print(f"Error initializing pipeline: {e}")
    pipeline = None

# 时间戳转换为秒
def timestamp_to_seconds(timestamp):
    h, m, s = map(float, timestamp.split(':'))
    return 3600 * h + 60 * m + s

# 音频拼接函数:拼接目标音频和混合音频,返回目标音频的起始时间和结束时间作为字典
def combine_audio_with_time(target_audio, mixed_audio):
    if pipeline is None:
        return "错误: 模型未初始化"
    
    # 打印文件路径,确保文件正确传递
    print(f"目标音频文件路径: {target_audio}")
    print(f"混合音频文件路径: {mixed_audio}")

    # 加载目标说话人的样本音频
    try:
        target_audio_segment = AudioSegment.from_wav(target_audio)
    except Exception as e:
        return f"加载目标音频时出错: {e}"
    
    # 加载混合音频
    try:
        mixed_audio_segment = AudioSegment.from_wav(mixed_audio)
    except Exception as e:
        return f"加载混合音频时出错: {e}"

    # 记录目标说话人音频的时间点(精确到0.01秒)
    target_start_time = len(mixed_audio_segment) / 1000  # 秒为单位,精确到 0.01 秒

    # 目标音频的结束时间(拼接后的音频长度)
    target_end_time = target_start_time + len(target_audio_segment) / 1000  # 秒为单位

    # 将目标说话人的音频片段添加到混合音频的最后
    final_audio = mixed_audio_segment + target_audio_segment
    final_audio.export("final_output.wav", format="wav")
    
    # 返回目标音频的起始时间和结束时间
    return {"start_time": target_start_time, "end_time": target_end_time}

# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
def diarize_audio(temp_file):
    if pipeline is None:
        return "错误: 模型未初始化"
    
    try:
        diarization = pipeline(temp_file)
        print("说话人分离结果:")
        for turn, _, speaker in diarization.itertracks(yield_label=True):
            print(f"[{turn.start:.3f} --> {turn.end:.3f}] {speaker}")
        return diarization
    except Exception as e:
        return f"处理音频时出错: {e}"

# 查找最匹配的说话人
def find_best_matching_speaker(target_start_time, target_end_time, diarization):
    best_match = None
    max_overlap = 0
    
    # 遍历所有说话人时间段,计算与目标音频的重叠部分
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        start = turn.start
        end = turn.end
        
        # 计算重叠部分的开始和结束时间
        overlap_start = max(start, target_start_time)
        overlap_end = min(end, target_end_time)
        
        # 如果有重叠部分,计算重叠的持续时间
        if overlap_end > overlap_start:
            overlap_duration = overlap_end - overlap_start
            
            # 如果当前重叠部分更大,则更新最匹配的说话人
            if overlap_duration > max_overlap:
                max_overlap = overlap_duration
                best_match = speaker
    
    return best_match, max_overlap

# 获取最匹配的说话人并返回其时间段
def process_audio(target_audio, mixed_audio):
    print(f"处理音频:目标音频: {target_audio}, 混合音频: {mixed_audio}")
    
    # 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
    time_dict = combine_audio_with_time(target_audio, mixed_audio)
    
    # 如果音频拼接出错,返回错误信息
    if isinstance(time_dict, str):
        return time_dict
    
    # 执行说话人分离
    diarization_result = diarize_audio("final_output.wav")
    
    if isinstance(diarization_result, str) and diarization_result.startswith("错误"):
        return diarization_result  # 出错时返回错误信息
    else:
        # 获取拼接后的音频长度
        final_audio_length = len(AudioSegment.from_wav("final_output.wav")) / 1000  # 秒为单位
        
        # 查找最匹配的说话人
        best_match, overlap_duration = find_best_matching_speaker(
            time_dict['start_time'], 
            time_dict['end_time'], 
            diarization_result
        )
        
        if best_match:
            return {
                'best_matching_speaker': best_match,
                'overlap_duration': overlap_duration
            }
        else:
            return "未找到匹配的说话人。"

# Gradio 接口
with gr.Blocks() as demo:
    gr.Markdown("""
    # 🗣️ 音频拼接与说话人分类 🗣️
    上传目标音频和混合音频,拼接并进行说话人分类。
    结果包括最匹配的说话人以及重叠时长。
    """)
    
    mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
    target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
    
    process_button = gr.Button("处理音频")
    
    # 输出结果
    diarization_output = gr.Textbox(label="最匹配的说话人及重叠时长")

    # 点击按钮时触发处理音频
    process_button.click(
        fn=process_audio,
        inputs=[target_audio_input, mixed_audio_input],
        outputs=[diarization_output]
    )

demo.launch(share=True)