File size: 8,895 Bytes
d8b6286
ba5925c
340e149
6d3bc8f
7d6a9ed
340e149
874baed
7d6a9ed
8a8a249
68f6bb9
3152b48
8a8a249
3152b48
 
 
 
 
 
 
 
 
 
 
307d4dd
 
 
 
 
6d92921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152b48
 
 
 
 
 
 
 
 
0501a59
 
 
 
 
 
3152b48
 
baf7f8a
3152b48
 
 
 
 
0501a59
3152b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340e149
3152b48
 
 
 
 
 
307d4dd
 
 
 
3152b48
 
ceffe1d
340e149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0766f5
 
 
 
 
 
 
 
 
340e149
 
 
 
 
 
 
 
 
 
 
 
 
 
b0766f5
 
 
 
46b30ee
 
3152b48
 
 
 
d579519
 
 
 
3152b48
 
 
 
d579519
3152b48
e4591db
 
 
340e149
 
d579519
 
340e149
d579519
21019ce
340e149
 
 
 
 
 
 
 
ba5925c
340e149
 
 
 
 
 
 
 
 
 
 
 
7c6f093
340e149
 
0bca3ec
340e149
68f6bb9
913c46d
68f6bb9
46b30ee
68f6bb9
307d4dd
ba5925c
68f6bb9
3152b48
68f6bb9
dedd569
3152b48
68f6bb9
3152b48
6d3bc8f
ba5925c
68f6bb9
6d3bc8f
68f6bb9
3152b48
46b30ee
ba5925c
68f6bb9
 
aa9a5ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import os
import gradio as gr
from pyannote.audio import Pipeline
from pydub import AudioSegment
from spaces import GPU
from io import BytesIO

# 获取 Hugging Face 认证令牌
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
pipeline = None

# 尝试加载 pyannote 模型
try:
    pipeline = Pipeline.from_pretrained(
        "pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    pipeline.to(device)
except Exception as e:
    print(f"Error initializing pipeline: {e}")
    pipeline = None

# 时间戳转换为秒
def timestamp_to_seconds(timestamp):
    h, m, s = map(float, timestamp.split(':'))
    return 3600 * h + 60 * m + s

def convert_to_wav(audio_file):
    try:
        # 使用 pydub 打开上传的音频文件
        audio = AudioSegment.from_file(audio_file)
        
        # 创建一个 BytesIO 对象以存储转换后的音频
        wav_output = BytesIO()
        
        # 将音频转换为 wav 格式并存储在 BytesIO 对象中
        audio.export(wav_output, format="wav")
        
        # 将 BytesIO 对象的位置重置为开始位置,以便之后可以读取
        wav_output.seek(0)
        
        return wav_output  # 返回转换后的 wav 音频
    except Exception as e:
        return f"音频转换失败: {e}"

# 音频拼接函数:拼接目标音频和混合音频,返回目标音频的起始时间和结束时间作为字典
def combine_audio_with_time(target_audio, mixed_audio):
    if pipeline is None:
        return "错误: 模型未初始化"
    
    # 打印文件路径,确保文件正确传递
    print(f"目标音频文件路径: {target_audio}")
    print(f"混合音频文件路径: {mixed_audio}")

    target_audio = convert_to_wav(target_audio)
    mixed_audio = convert_to_wav(mixed_audio)

    print(f"目标音频文件路径: {target_audio}")
    print(f"混合音频文件路径: {mixed_audio}")
    
    # 加载目标说话人的样本音频
    try:
        target_audio_segment = AudioSegment.from_wav(target_audio)
    except Exception as e:
        return f"加载目标音频时出错: {e}"
    
    # 加载混合音频
    try:
        mixed_audio_segment = AudioSegment.from_wav(mixed_audio)
    except Exception as e:
        return f"加载混合音频时出错: {e}"

    # 记录目标说话人音频的时间点(精确到0.01秒)
    target_start_time = len(mixed_audio_segment) / 1000  # 秒为单位,精确到 0.01 秒

    # 目标音频的结束时间(拼接后的音频长度)
    target_end_time = target_start_time + len(target_audio_segment) / 1000  # 秒为单位

    # 将目标说话人的音频片段添加到混合音频的最后
    final_audio = mixed_audio_segment + target_audio_segment
    final_audio.export("final_output.wav", format="wav")
    
    # 返回目标音频的起始时间和结束时间
    return {"start_time": target_start_time, "end_time": target_end_time}

# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
@GPU(duration=60 * 2)  # 使用 GPU 加速,限制执行时间为 120 秒
def diarize_audio(temp_file):
    if pipeline is None:
        return "错误: 模型未初始化"
    
    try:
        diarization = pipeline(temp_file)
        print("说话人分离结果:")
        for turn, _, speaker in diarization.itertracks(yield_label=True):
            print(f"[{turn.start:.3f} --> {turn.end:.3f}] {speaker}")
        return diarization
    except Exception as e:
        return f"处理音频时出错: {e}"

# 查找最匹配的说话人
def find_best_matching_speaker(target_start_time, target_end_time, diarization):
    best_match = None
    max_overlap = 0
    
    # 遍历所有说话人时间段,计算与目标音频的重叠部分
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        start = turn.start
        end = turn.end
        
        # 计算重叠部分的开始和结束时间
        overlap_start = max(start, target_start_time)
        overlap_end = min(end, target_end_time)
        
        # 如果有重叠部分,计算重叠的持续时间
        if overlap_end > overlap_start:
            overlap_duration = overlap_end - overlap_start
            
            # 如果当前重叠部分更大,则更新最匹配的说话人
            if overlap_duration > max_overlap:
                max_overlap = overlap_duration
                best_match = speaker
    
    return best_match, max_overlap

# 获取目标说话人的时间段(排除目标音频时间段)
def get_speaker_segments(diarization, target_start_time, target_end_time, final_audio_length):
    speaker_segments = {}
    
    # 遍历所有说话人时间段
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        start = turn.start
        end = turn.end
        
        # 如果时间段与目标音频有重叠,需要截断
        if start < target_end_time and end > target_start_time:
            # 记录被截断的时间段
            if start < target_start_time:
                # 目标音频开始前的时间段
                speaker_segments.setdefault(speaker, []).append((start, min(target_start_time, end)))
            
            if end > target_end_time:
                # 目标音频结束后的时间段
                speaker_segments.setdefault(speaker, []).append((max(target_end_time, start), min(end, final_audio_length)))
        else:
            # 完全不与目标音频重叠的时间段
            if end <= target_start_time or start >= target_end_time:
                speaker_segments.setdefault(speaker, []).append((start, end))
    
    return speaker_segments

# 处理音频文件并返回输出
def process_audio(target_audio, mixed_audio):
    print(f"处理音频:目标音频: {target_audio}, 混合音频: {mixed_audio}")
    
    # 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
    time_dict = combine_audio_with_time(target_audio, mixed_audio)
    
    # 如果音频拼接出错,返回错误信息
    if isinstance(time_dict, str):
        return time_dict
    
    # 执行说话人分离
    diarization_result = diarize_audio("final_output.wav")
    
    if isinstance(diarization_result, str) and diarization_result.startswith("错误"):
        return diarization_result  # 出错时返回错误信息
    else:
        # 获取拼接后的音频长度
        final_audio_length = len(AudioSegment.from_wav("final_output.wav")) / 1000  # 秒为单位
        
        # 查找最匹配的说话人
        best_match, overlap_duration = find_best_matching_speaker(
            time_dict['start_time'], 
            time_dict['end_time'], 
            diarization_result
        )
        
        if best_match:
            # 获取目标说话人的时间段(排除和截断目标音频时间段)
            speaker_segments = get_speaker_segments(
                diarization_result, 
                time_dict['start_time'], 
                time_dict['end_time'], 
                final_audio_length
            )
            
            if best_match in speaker_segments:
                # 拼接所有片段
                final_output = AudioSegment.empty()
                for segment in speaker_segments[best_match]:
                    start_time_ms = int(segment[0] * 1000)  # 转为毫秒
                    end_time_ms = int(segment[1] * 1000)
                    segment_audio = AudioSegment.from_wav("final_output.wav")[start_time_ms:end_time_ms]
                    final_output += segment_audio
                
                # 导出最终拼接音频
                final_output.export("final_combined_output.wav", format="wav")
                
                return "final_combined_output.wav"
            else:
                return "没有找到匹配的说话人时间段。"
        else:
            return "未找到匹配的说话人。"

# Gradio 接口
with gr.Blocks() as demo:
    gr.Markdown("""
    # 🗣️ 音频拼接与说话人分类 🗣️
    上传目标音频和混合音频,拼接并进行说话人分类。
    结果包括目标说话人(SPEAKER_00)的时间段,已排除和截断目标录音时间段,并自动剪辑目标音频。
    """)
    
    mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
    target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
    
    process_button = gr.Button("处理音频")
    
    # 输出结果
    output_audio = gr.Audio(label="剪辑后的音频")

    # 点击按钮时触发处理音频
    process_button.click(
        fn=process_audio,
        inputs=[target_audio_input, mixed_audio_input],
        outputs=[output_audio]
    )

demo.launch(share=True)