Spaces:
Runtime error
Runtime error
File size: 8,667 Bytes
babca6f dc9cf4c cbe4d4c c8e54ed 1ae8e53 ec796a2 a6b9c5b ff14337 218afdc 87e9ad0 ff14337 df85058 ff14337 53eb88c 28ff844 ff14337 df85058 a94b06f df85058 61fa7d4 d4a83f2 34bf2a6 d4a83f2 61fa7d4 4b9eea9 df85058 0c5e4a4 ed2f0b8 fd26334 e7cf2e7 c8e54ed eabbe21 c8e54ed bbd3701 2cadcf2 f10b2fa 6bfef5d 395d676 ed2f0b8 dd5c246 fd26334 8c28395 e91d036 218afdc 395d676 73d041b 395d676 b31f1e8 0c5e4a4 218afdc 395d676 95f2d9c 184643c f5f212e 59bfc5c 22b7cff 2186147 b9a0cdb 184643c fd26334 95b70d7 a5a144e eabbe21 22b7cff 395d676 fd26334 6615174 ff14337 7a481f6 187b547 bb7f792 187b547 bb7f792 7a481f6 187b547 9bae889 ff14337 6615174 ff14337 789fd51 ff14337 be06195 ff14337 95b70d7 395d676 c2b4186 a6b9c5b 33b1b5b df92cf7 53eb88c 187b547 218afdc 3e45c8c 33b1b5b ca7ae8f 335e90e ec796a2 22b7cff 71fe961 a5a144e eabbe21 30dbd25 c8e54ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
import pandas as pd
import random
import classify
import replace_explitives
from whisper.model import Whisper
from whisper.tokenizer import get_tokenizer
from speechbrain.pretrained.interfaces import foreign_class
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model
model_cache = {}
# Building prediction function for gradio
emo_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'neu': 'Neutral'
}
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
class_options = {
"racism": ["racism", "hate speech", "bigotry", "racially targeted", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
"LGBTQ+ hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+", "hate speech"],
"sexually explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexist", "sexually demeaning", "sexual violence", "victim blaming"],
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
}
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
def classify_emotion(audio):
#### Emotion classification ####
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
return emo_dict[text_lab[0]]
def slider_logic(slider):
threshold = 0
if slider == 1:
threshold = .98
elif slider == 2:
threshold = .88
elif slider == 3:
threshold = .77
elif slider == 4:
threshold = .66
elif slider == 5:
threshold = .55
else:
threshold = []
return threshold
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, explitive_selection, slider):
# Transcribe the audio file using Whisper ASR
if audio_file != None:
transcribed_text = pipe(audio_file)["text"]
else:
transcribed_text = text_input
if classify_anxiety != "misophonia":
print("emo_class ", emo_class, "explitive select", explitive_selection)
## SLIDER ##
threshold = slider_logic(slider)
#------- explitive call ---------------
if replace_explitives != None and emo_class == None:
transcribed_text = replace_explitives.sub_explitives(transcribed_text, explitive_selection)
#### Toxicity Classifier ####
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
toxicity_score = toxicity_results["toxicity"][0]
print(toxicity_score)
# emo call
if emo_class != None:
classify_emotion(audio_file)
#### Text classification #####
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
sequence_to_classify = transcribed_text
print(classify_anxiety, class_options)
candidate_labels = class_options.get(classify_anxiety, [])
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
print("class output ", type(classification_output))
# classification_df = pd.DataFrame.from_dict(classification_output)
print("keys ", classification_output.keys())
# formatted_classification_output = "\n".join([f"{key}: {value}" for key, value in classification_output.items()])
label_score_pairs = [(label, score) for label, score in zip(classification_output['labels'], classification_output['scores'])]
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
if toxicity_score > threshold:
print("threshold exceeded!! Launch intervention")
affirm = positive_affirmations()
else:
affirm = ""
return toxicity_score, label_score_pairs, transcribed_text, affirm
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
else:
threshold = slider_logic(slider)
model = whisper.load_model("large")
# model = model_cache[model_name]
# class_names = classify_anxiety.split(",")
class_names_list = class_options.get(classify_anxiety, [])
class_str = ""
for elm in class_names_list:
class_str += elm + ","
#class_names = class_names_temp.split(",")
class_names = class_str.split(",")
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
tokenizer = get_tokenizer("large")
# tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=model,
class_names=class_names,
# class_names=classify_anxiety,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_file, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
return {class_name: score for class_name, score in zip(class_names, scores)}
if toxicity_score > threshold:
print("threshold exceeded!! Launch intervention")
return classify_anxiety
def positive_affirmations():
affirmations = [
"I have survived my anxiety before and I will survive again now",
"I am not in danger; I am just uncomfortable; this too will pass",
"I forgive and release the past and look forward to the future",
"I can't control what other people say but I can control my breathing and my response"
]
selected_affirm = random.choice(affirmations)
return selected_affirm
with gr.Blocks() as iface:
show_state = gr.State([])
with gr.Column():
anxiety_class = gr.Radio(["racism", "LGBTQ+ hate", "sexually explicit", "misophonia"])
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
emo_class = gr.Radio(choices=["negaitve emotionality"], label="label", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
submit_btn = gr.Button(label="Run")
with gr.Column():
out_val = gr.Textbox()
out_class = gr.Label()
out_text = gr.Textbox()
out_affirm = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_val, out_class, out_text, out_affirm])
iface.launch() |