File size: 13,634 Bytes
bbe788d
 
 
897ea2d
bbe788d
9fb5d19
 
2f2b0d5
60fd325
5d1bc6b
2506d4a
9602bfe
88484cb
 
 
 
 
 
 
 
5d1bc6b
e7d9cc7
5d1bc6b
59fd337
 
e84a44c
59fd337
 
 
 
 
 
 
 
 
 
 
 
6eeacf7
59fd337
 
 
ea90ced
eb69c0e
 
 
 
 
 
a580030
 
 
 
 
0bc1a23
 
 
 
a580030
 
 
 
 
 
0bc1a23
a580030
 
 
 
0697975
 
 
 
 
 
 
f2e7a61
9e1bee4
4324c06
cbc8d85
0697975
 
 
994bcfa
0697975
 
 
 
 
 
 
 
 
 
 
 
f573577
bbe788d
63a0d92
bbe788d
a580030
 
68fd81d
51799e9
efd3036
51799e9
efd3036
37d9b55
a580030
bbe788d
81d3eef
8c758a4
81d3eef
5cdc637
02c8225
f573577
9e1bee4
 
 
5cdc637
 
 
 
de141c7
 
 
f573577
02c8225
5cdc637
703e3e3
5cdc637
9e1bee4
 
 
5cdc637
 
 
 
fac9697
af3bf18
 
 
703e3e3
 
5cdc637
703e3e3
5cdc637
9e1bee4
 
 
5cdc637
 
 
 
fac9697
af3bf18
a998bd1
 
99d8e2d
5cdc637
703e3e3
b5290a2
 
ab64c26
f573577
2f0dc3c
192d701
2f0dc3c
 
f573577
68fd81d
db72775
02c8225
6c40417
 
9fb5d19
 
 
 
6ee2207
 
 
 
 
9fb5d19
 
 
ba96f19
9fb5d19
6262455
 
19af976
bbe788d
1a07133
8b69c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a07133
8b69c69
 
 
 
 
 
 
ab64c26
 
 
1a07133
6c40417
 
fd31ef9
efca6f0
 
 
 
 
 
 
 
38a9e29
9c4dcb3
38a9e29
87c4391
 
 
 
 
 
 
 
897ea2d
efb0d40
c27a8df
1d5c8f8
6c40417
68c0e55
53c3483
 
e7d9cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c3483
045fa06
 
 
 
 
 
7673c97
 
 
59fd337
 
 
7673c97
 
 
 
 
8c758a4
d9189c2
2c61227
 
02052b7
8ed4374
02052b7
74f85af
02052b7
 
 
 
8ed4374
02052b7
 
 
34391be
 
02052b7
69d0d2d
02052b7
0bc1a23
02052b7
f96846f
0bc1a23
 
f96846f
9e35f08
 
69d0d2d
 
02052b7
c903a84
bc7b20c
4eb55de
 
d9189c2
7673c97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from geopy.distance import geodesic
import googlemaps
from geopy.exc import GeocoderTimedOut
from streamlit_folium import st_folium
import folium
from branca.colormap import LinearColormap
import base64
from io import BytesIO
import sys

# Print the Python version
print("Python version")
print(sys.version)
print("Version info.")
print(sys.version_info)



# Function to add heatmap layer to folium map
def add_heatmap_layer(map_obj, data, column_name, colormap_name, radius=15):
    heat_data = data[['latitude', 'longitude', column_name]].dropna()
    heat_layer = folium.FeatureGroup(name=f'Variável - {column_name}')

    cmap = LinearColormap(colors=['blue', 'white', 'red'], vmin=heat_data[column_name].min(), vmax=heat_data[column_name].max())

    for index, row in heat_data.iterrows():
        folium.CircleMarker(
            location=[row['latitude'], row['longitude']],
            radius=radius,
            fill=True,
            fill_color=cmap(row[column_name]),
            fill_opacity=0.7,
            color='black',
            weight=0.5,
            popup=f"{column_name}: {row[column_name]:.2f}"  # Fix here
        ).add_to(heat_layer)

    heat_layer.add_to(map_obj)
    
# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
    coords_1 = (lat1, lon1)
    coords_2 = (lat2, lon2)
    return geodesic(coords_1, coords_2).meters

def knn_predict(df, target_column, features_columns, k=5):
    # Separate features and target variable
    X = df[features_columns]
    y = df[target_column]

    # Check if there is enough data for prediction
    if len(X) < k:
        return np.zeros(len(X))  # Return an array of zeros if there isn't enough data

    # Create KNN regressor
    knn = KNeighborsRegressor(n_neighbors=k)

    # Fit the model
    knn.fit(X, y)

    # Use the model to predict target_column for the filtered_data
    predictions = knn.predict(df[features_columns])

    return predictions

# Set wide mode
st.set_page_config(layout="wide")

# Set dark theme
st.markdown(
    """
    <style>
        @font-face {font-family: 'Quicksand';
        src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');

        }
        body {
            color: white;
            background-color: #1e1e1e;
            font-family: 'Quicksand', sans-serif;
        }
        .st-df-header, .st-df-body, .st-df-caption {
            color: #f8f9fa;  /* Bootstrap table header text color */
        }
        .st-eb {
            background-color: #343a40;  /* Streamlit exception box background color */
        }
    </style>
    """,
    unsafe_allow_html=True
)


# Create a DataFrame with sample data
data = pd.read_excel('data_nexus.xlsx')

# Initialize variables to avoid NameError
radius_visible = True
custom_address_initial = 'Centro, Lajeado - RS, Brazil'  # Initial custom address
#custom_lat = data['latitude'].median()
custom_lat = -29.45880114339262
#custom_lon = data['longitude'].median()
custom_lon = -51.97011580843118
radius_in_meters = 150000
filtered_data = data  # Initialize with the entire dataset

# Calculate a zoom level based on the maximum distance
zoom_level = 13

# Set font to 'Quicksand' for title_html
title_html = """
        <style>
        @font-face {font-family: 'Quicksand';
        src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
        }
        body {{
            font-family: 'Quicksand', sans-serif;
        }}
    </style>
    <span style='color: gray; font-size: 50px;'>aval</span>
    <span style='color: white; font-size: 50px;'>ia</span>
    <span style='color: gray; font-size: 50px;'>.NEXUS</span>
    """

# Set font to 'Quicksand' for factor_html
factor_html = """
    <style>
        @font-face {font-family: 'Quicksand';
        src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
        }
        body {{
            font-family: 'Quicksand', sans-serif;
        }}
    </style>
    <a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR' target='_blank' style='text-decoration: none; color: inherit;'>
    <span style='color: gray; font-size: 20px;'>aval</span>
    <span style='color: white; font-size: 20px;'>ia</span>
    <span style='color: gray; font-size: 20px;'>.FACTOR</span>
"""

# Set font to 'Quicksand' for evo_html
evo_html = """
    <style>
        @font-face {font-family: 'Quicksand';
        src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
        }
        body {{
            font-family: 'Quicksand', sans-serif;
        }}
    </style>
    <a href='https://huggingface.co/spaces/DavidSB/avalia.EVO' target='_blank' style='text-decoration: none; color: inherit;'>
    <span style='color: gray; font-size: 20px;'>aval</span>
    <span style='color: white; font-size: 20px;'>ia</span>
    <span style='color: gray; font-size: 20px;'>.EVO</span>
"""


# Create a sidebar for controls
with st.sidebar:
    st.markdown(title_html, unsafe_allow_html=True)

    # Add a dropdown for filtering "Fonte"
    selected_fonte = st.selectbox('Finalidade', data['Fonte'].unique(), index=data['Fonte'].unique().tolist().index('Venda'))
    data = data[data['Fonte'] == selected_fonte]

    # Add a dropdown for filtering "Tipo"
    selected_tipo = st.selectbox('Tipo de imóvel', data['Tipo'].unique(), index=data['Tipo'].unique().tolist().index('Apartamento'))
    data_tipo = data[data['Tipo'] == selected_tipo]
    
    custom_address = st.text_input('Informe o endereço', custom_address_initial)
    radius_visible = True  # Show radius slider for custom coordinates

    gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0')  # Replace with your API key

    try:
        # Ensure custom_address ends with " - RS, Brazil"
        custom_address = custom_address.strip()  # Remove leading/trailing whitespaces
        if not custom_address.endswith(" - RS, Brazil"):
            custom_address += " - RS, Brazil"

        location = gmaps.geocode(custom_address)[0]['geometry']['location']
        custom_lat, custom_lon = location['lat'], location['lng']
    except (IndexError, GeocoderTimedOut):
        st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.")

    # Conditionally render the radius slider
    if radius_visible:
        radius_in_meters = st.number_input('Selecione raio (em metros)', min_value=0, max_value=100000, value=2000)

    # Add sliders to filter data based
    #atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1 if data_tipo['Atotal'].min() != data_tipo['Atotal'].max() else 0.1)
    #apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1 if data_tipo['Apriv'].min() != data_tipo['Apriv'].max() else 0.1)

    # Create two columns for Área Total inputs
    col1, col2 = st.columns(2)
    with col1:
        atotal_min = st.number_input('Área Total mínima', 
                                     min_value=float(data_tipo['Atotal'].min()), 
                                     max_value=float(data_tipo['Atotal'].max()), 
                                     value=float(data_tipo['Atotal'].min()),
                                     step=0.1)
    with col2:
        atotal_max = st.number_input('Área Total máxima', 
                                     min_value=float(data_tipo['Atotal'].min()), 
                                     max_value=float(data_tipo['Atotal'].max()), 
                                     value=float(data_tipo['Atotal'].max()),
                                     step=0.1)

    # Create two columns for Área Privativa inputs
    col3, col4 = st.columns(2)
    with col3:
        apriv_min = st.number_input('Área Privativa mínima', 
                                    min_value=float(data_tipo['Apriv'].min()), 
                                    max_value=float(data_tipo['Apriv'].max()), 
                                    value=float(data_tipo['Apriv'].min()),
                                    step=0.1)
    with col4:
        apriv_max = st.number_input('Área Privativa máxima', 
                                    min_value=float(data_tipo['Apriv'].min()), 
                                    max_value=float(data_tipo['Apriv'].max()), 
                                    value=float(data_tipo['Apriv'].max()),
                                    step=0.1)

    
    #data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) &
            #(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1]))]
        
    data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_min, atotal_max)) &
            (data_tipo['Apriv'].between(apriv_min, apriv_max))]
    
# Links to other apps at the bottom of the sidebar
st.sidebar.markdown(factor_html, unsafe_allow_html=True)
st.sidebar.markdown(evo_html, unsafe_allow_html=True)

filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
filtered_data = filtered_data.dropna()  # Drop rows with NaN values

# Add a custom CSS class to the map container
st.markdown(f"""<style>
.map {{
  width: 100%;
  height: 100vh;
}}
</style>""", unsafe_allow_html=True)

# Determine which area feature to use for prediction
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal'])

# Define the target column based on conditions
filtered_data['target_column'] = np.where(filtered_data['Vunit_priv'] != 0, filtered_data['Vunit_priv'], filtered_data['Vunit_total'])

# Apply KNN and get predicted target values
predicted_target = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude', 'area_feature'])  # Update with your features

# Add predicted target values to filtered_data
filtered_data['Predicted_target'] = predicted_target


with st.container():
    st.map(filtered_data, zoom=zoom_level, use_container_width=True)
    st.write("Dados:", filtered_data)  # Debug: Print filtered_data

    if st.button('Baixar planilha'):
        st.write("Preparando...")
        # Set up the file to be downloaded
        output_df = filtered_data

        # Create a BytesIO buffer to hold the Excel file
        excel_buffer = BytesIO()

        # Convert DataFrame to Excel and save to the buffer
        with pd.ExcelWriter(excel_buffer, engine="xlsxwriter") as writer:
            output_df.to_excel(writer, index=False, sheet_name="Sheet1")

        # Reset the buffer position to the beginning
        excel_buffer.seek(0)

        # Create a download link
        b64 = base64.b64encode(excel_buffer.read()).decode()
        href = f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="sample_data.xlsx">Clique aqui para baixar a planilha</a>'
        #st.markdown(href, unsafe_allow_html=True)

        # Use st.empty() to create a placeholder and update it with the link
        download_placeholder = st.empty()
        download_placeholder.markdown(href, unsafe_allow_html=True)
        
    folium_layermap = folium.Map(location=[custom_lat, custom_lon], zoom_start=zoom_level, control_scale=True)

    # Add heatmap layers for 'Valor_Urb', 'Valor_Eqp', and 'RENDA'
    add_heatmap_layer(folium_layermap, filtered_data, 'Valor_Urb', 'RdBu_r')
    add_heatmap_layer(folium_layermap, filtered_data, 'Valor_Eqp', 'RdBu_r')
    add_heatmap_layer(folium_layermap, filtered_data, 'RENDA', 'RdBu_r')

    # Add layer control
    folium.LayerControl().add_to(folium_layermap)

    # Display the map using st_folium
    st_folium(folium_layermap, width=900, height=350)

k_threshold = 5

# Function to perform bootstrap on the predicted target values
def bootstrap_stats(bound_data, num_samples=1000):
    # Reshape the predicted_target array
    bound_data = np.array(bound_data).reshape(-1, 1)

    # Bootstrap resampling
    bootstrapped_means = []
    for _ in range(num_samples):
        bootstrap_sample = np.random.choice(bound_data.flatten(), len(bound_data), replace=True)
        bootstrapped_means.append(np.mean(bootstrap_sample))

    # Calculate lower and higher bounds
    lower_bound = np.percentile(bootstrapped_means, 16.)
    higher_bound = np.percentile(bootstrapped_means, 84.)

    return lower_bound, higher_bound

# Apply KNN and get predicted Predicted_target values
predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature'])

# Check if there are predictions to display
if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0):

    # Apply bootstrap - bounds
    lower_bound, higher_bound = bootstrap_stats(filtered_data['target_column'])

    mean_value = np.mean(filtered_data['Predicted_target'])

    # Display the results with custom styling
    st.markdown("## **Resultado da Análise Estatística**")
    st.write(f"Valor médio (Reais/m²) para as características selecionadas: ${mean_value:.2f}$ Reais")
    st.write(f"Os valores podem variar entre ${lower_bound:.2f}$ e ${higher_bound:.2f}$ Reais, dependendo das características dos imóveis.")
else:
    st.warning(f"**Dados insuficientes para inferência do valor. Mínimo necessário:** {k_threshold}")