File size: 19,262 Bytes
4c634f2
ee0d33f
 
1ee9ade
0f467e3
b5e77db
4c634f2
0f467e3
ebf0b29
ee0d33f
4c634f2
1ee9ade
4c634f2
 
1ee9ade
4c634f2
 
1ee9ade
4c634f2
 
1ee9ade
4c634f2
 
1ee9ade
4c634f2
 
1ee9ade
4c634f2
221de09
b397f13
4c634f2
f7ea072
4c634f2
 
 
 
 
 
f7ea072
bb850d5
6100c94
bb850d5
221de09
07bed83
0f467e3
 
8cae8bc
0ec0587
8cae8bc
 
 
 
 
 
 
 
 
 
0f467e3
 
5b575aa
4c634f2
 
 
 
 
 
 
 
 
 
5b575aa
1ee9ade
 
4c634f2
 
1ee9ade
ee0d33f
1ee9ade
 
ee0d33f
1ee9ade
 
 
4c634f2
5b575aa
221de09
4c634f2
1ee9ade
4c634f2
bba2975
221de09
1ee9ade
4c634f2
daa5ff3
4c634f2
1ee9ade
0f467e3
 
 
09c3b82
0f467e3
 
 
 
 
 
 
09c3b82
 
0f467e3
 
 
 
 
09c3b82
 
0f467e3
 
 
 
 
5b575aa
221de09
f7ea072
038645c
f7ea072
4c634f2
 
 
 
 
 
f7ea072
4c634f2
6100c94
bb850d5
bba2975
e41cc61
 
 
 
 
 
 
 
 
ffee274
5b575aa
e41cc61
 
 
5b575aa
221de09
4c634f2
9e1df22
4c634f2
 
d57300e
4c634f2
5463224
daa5ff3
 
 
6100c94
e41cc61
daa5ff3
 
 
 
 
 
6100c94
e41cc61
daa5ff3
 
 
1ee9ade
 
4c634f2
 
 
 
 
3dd2c60
e07287a
3dd2c60
1ee9ade
 
 
65b4025
4c634f2
 
 
 
 
 
 
 
 
65b4025
221de09
79513d7
 
4c634f2
79513d7
 
 
 
65b4025
221de09
79513d7
 
65b4025
221de09
79513d7
8cae8bc
 
 
79513d7
efa520c
8cae8bc
425594a
8cae8bc
cad33a9
8cae8bc
 
 
 
 
b45bcf7
8cae8bc
b45bcf7
8cae8bc
b45bcf7
8cae8bc
b45bcf7
8cae8bc
efa520c
425594a
0f467e3
8cae8bc
0f467e3
8cae8bc
 
 
 
 
 
 
0f467e3
8cae8bc
 
 
 
 
 
0f467e3
8cae8bc
 
 
 
 
0f467e3
65b4025
 
221de09
79513d7
 
 
4c634f2
 
 
 
 
 
79513d7
4c634f2
6100c94
79513d7
65b4025
b6bf8ab
 
 
 
 
 
 
 
4c634f2
ffee274
65b4025
b6bf8ab
 
 
65b4025
4c634f2
9e1df22
 
4c634f2
d57300e
4c634f2
5463224
daa5ff3
 
8cae8bc
 
6100c94
b6bf8ab
daa5ff3
 
 
 
 
8cae8bc
 
6100c94
b6bf8ab
daa5ff3
 
f7ea072
1ee9ade
 
69a21ba
f7ea072
1ee9ade
 
221de09
f7ea072
1ee9ade
 
 
 
7c285ca
1ee9ade
7c285ca
bba2975
69a21ba
1ee9ade
 
 
 
bba2975
f7ea072
221de09
f7ea072
4c634f2
587e518
4c634f2
 
 
 
 
 
 
3a0b0c9
221de09
f7ea072
a263611
4c634f2
 
 
 
 
221de09
f7ea072
4c634f2
 
 
 
 
 
bb850d5
fb09c72
221de09
f7ea072
4c634f2
a263611
4c634f2
a263611
4c634f2
 
 
 
 
69a21ba
f7ea072
bba2975
f7ea072
221de09
f7ea072
4c634f2
 
 
 
 
 
f7ea072
221de09
f7ea072
4c634f2
 
 
 
 
221de09
b397f13
4c634f2
 
 
 
 
 
79513d7
fb09c72
221de09
f7ea072
a263611
4c634f2
a263611
4c634f2
 
 
 
 
 
 
1ee9ade
3a0b0c9
4c634f2
5958011
4c634f2
ebf0b29
e07287a
 
 
ebf0b29
69a21ba
4c634f2
9db221b
4c634f2
d0a463e
4c634f2
 
d0a463e
4c634f2
d0a463e
4c634f2
6518c39
d0a463e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c634f2
 
65070b3
 
221de09
 
 
e6419e2
65070b3
 
4c634f2
 
6518c39
4c634f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Imports
import gradio as gr
import whisper
from pytube import YouTube
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
from wordcloud import WordCloud
import re
import os

class GradioInference:
    def __init__(self):
        
        # OpenAI's Whisper model sizes
        self.sizes = list(whisper._MODELS.keys())

        # Whisper's available languages for ASR
        self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
        
        # Default size
        self.current_size = "base"
        
        # Default model size
        self.loaded_model = whisper.load_model(self.current_size)
        
        # Initialize Pytube Object
        self.yt = None

        # Initialize summary model for English
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

        # Initialize VoiceLabT5 model and tokenizer
        self.keyword_model = T5ForConditionalGeneration.from_pretrained(
            "Voicelab/vlt5-base-keywords"
        )
        self.keyword_tokenizer = T5Tokenizer.from_pretrained(
            "Voicelab/vlt5-base-keywords"
        )

        # Sentiment Classifier
        self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False)

        # Initialize Multilingual summary model 
        self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
        self.model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")

        # self.llm_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
        
        # self.pipeline = pipeline(
        #     "text-generation", #task
        #     model="tiiuae/falcon-7b-instruct",
        #     tokenizer=self.llm_tokenizer,
        #     trust_remote_code=True,
        #     do_sample=True,
        #     top_k=10,
        #     num_return_sequences=1,
        #     eos_token_id=self.tokenizer.eos_token_id
        # )

    
    def __call__(self, link, lang, size, progress=gr.Progress()):
        """
        Call the Gradio Inference python class.
        This class gets access to a YouTube video using python's library Pytube and downloads its audio.
        Then it uses the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text).
        Once the function has the transcription of the video it proccess it to obtain:
            - Summary: using Facebook's BART transformer.
            - KeyWords: using VoiceLabT5 keyword extractor.
            - Sentiment Analysis: using Hugging Face's default sentiment classifier
            - WordCloud: using the wordcloud python library.
        """
        progress(0, desc="Starting analysis")
        if self.yt is None:
            self.yt = YouTube(link)
        
        # Pytube library to access to YouTube audio stream
        path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")

        if lang == "none":
            lang = None

        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size

        progress(0.20, desc="Transcribing")
        
        # Transcribe the audio extracted from pytube
        results = self.loaded_model.transcribe(path, language=lang)

        progress(0.40, desc="Summarizing")
        
        # Perform summarization on the transcription
        transcription_summary = self.summarizer(
            results["text"], max_length=150, min_length=30, do_sample=False
        )

        #### Prueba
        WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
        
        input_ids_sum = self.tokenizer(
            [WHITESPACE_HANDLER(results["text"])],
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=512
        )["input_ids"]
        
        output_ids_sum = self.model.generate(
            input_ids=input_ids_sum,
            max_length=130,
            no_repeat_ngram_size=2,
            num_beams=4
        )[0]
        
        summary = self.tokenizer.decode(
            output_ids_sum,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )
        #### Fin prueba

        progress(0.50, desc="Extracting Keywords")
        
        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(
            input_sequence, return_tensors="pt", truncation=False
        ).input_ids
        output = self.keyword_model.generate(
            input_ids, no_repeat_ngram_size=3, num_beams=4
        )
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(",") if x.strip()]
        formatted_keywords = "\n".join([f"β€’ {keyword}" for keyword in keywords])

        progress(0.80, desc="Extracting Sentiment")
       
        # Define a dictionary to map labels to emojis
        sentiment_emojis = {
            "positive": "Positive πŸ‘πŸΌ",
            "negative": "Negative πŸ‘ŽπŸΌ",
            "neutral": "Neutral 😢",
        }
        
        # Sentiment label    
        label = self.classifier(summary)[0]["label"]

        # Format the label with emojis
        formatted_sentiment = sentiment_emojis.get(label, label)

        progress(0.90, desc="Generating Wordcloud")
        
        # Generate WordCloud object
        wordcloud = WordCloud(colormap = "Oranges").generate(results["text"])

        # WordCloud image to display
        wordcloud_image = wordcloud.to_image()

        if lang == "english":
            return (
                results["text"],
                transcription_summary[0]["summary_text"],
                formatted_keywords,
                formatted_sentiment,
                wordcloud_image,
            )
        else:
            return (
                results["text"],
                summary,
                formatted_keywords,
                formatted_sentiment,
                wordcloud_image,
            )


    def populate_metadata(self, link):
        """
        Access to the YouTube video title and thumbnail image to further display it
        params:
        - link: a YouTube URL.
        """
        if not link:
            return None, None
            
        self.yt = YouTube(link)
        return self.yt.thumbnail_url, self.yt.title

    def from_audio_input(self, lang, size, audio_file, progress=gr.Progress()):
        """
        Call the Gradio Inference python class.
        Uses it directly the Whisper model to perform Automatic Speech Recognition (i.e Speech-to-Text).
        Once the function has the transcription of the video it proccess it to obtain:
            - Summary: using Facebook's BART transformer.
            - KeyWords: using VoiceLabT5 keyword extractor.
            - Sentiment Analysis: using Hugging Face's default sentiment classifier
            - WordCloud: using the wordcloud python library.
        """
        progress(0, desc="Starting analysis")
        
        if lang == "none":
            lang = None

        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size

        progress(0.20, desc="Transcribing")
        
        results = self.loaded_model.transcribe(audio_file, language=lang)

        progress(0.40, desc="Summarizing")
        
        # Perform summarization on the transcription
        transcription_summary = self.summarizer(
            results["text"], max_length=150, min_length=30, do_sample=False
        )

        ########################## PRUEBA LLM #################################
        # from langchain import HuggingFacePipeline, PromptTemplate, LLMChain
        
        # llm = HuggingFacePipeline(pipeline = self.pipeline, model_kwargs = {'temperature':0})
        
        # template = """
        #       Write a concise summary of the following text delimited by triple backquotes.
        #       ```{text}```
        #       CONCISE SUMMARY:
        #    """

        # prompt = PromptTemplate(template=template, input_variables=["text"])

        # llm_chain = LLMChain(prompt=prompt, llm=llm)

        # text = results["text"]

        # summ = llm_chain.run(text)
        ########################## FIN PRUEBA LLM #################################
        
        #### Prueba
        WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
        
        input_ids_sum = self.tokenizer(
            [WHITESPACE_HANDLER(results["text"])],
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=512
        )["input_ids"]
        
        output_ids_sum = self.model.generate(
            input_ids=input_ids_sum,
            max_length=130,
            no_repeat_ngram_size=2,
            num_beams=4
        )[0]
        
        summary = self.tokenizer.decode(
            output_ids_sum,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )
        #### Fin prueba

        progress(0.50, desc="Extracting Keywords")
        
        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(
            input_sequence, return_tensors="pt", truncation=False
        ).input_ids
        output = self.keyword_model.generate(
            input_ids, no_repeat_ngram_size=3, num_beams=4
        )
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(",") if x.strip()]
        formatted_keywords = "\n".join([f"β€’ {keyword}" for keyword in keywords])

        progress(0.80, desc="Extracting Sentiment")

        # Define a dictionary to map labels to emojis
        sentiment_emojis = {
            "positive": "Positive πŸ‘πŸΌ",
            "negative": "Negative πŸ‘ŽπŸΌ",
            "neutral": "Neutral 😢",
        }
        
        # Sentiment label    
        label = self.classifier(summary)[0]["label"]

        # Format the label with emojis
        formatted_sentiment = sentiment_emojis.get(label, label)
        
        progress(0.90, desc="Generating Wordcloud")
        # WordCloud object
        wordcloud = WordCloud(colormap = "Oranges").generate(
            results["text"]
        )
        wordcloud_image = wordcloud.to_image()

        if lang == "english":
            return (
                results["text"],
                # summ,
                transcription_summary[0]["summary_text"],
                formatted_keywords,
                formatted_sentiment,
                wordcloud_image,
            )
        else:
            return (
                results["text"],
                # summ,
                summary,
                formatted_keywords,
                formatted_sentiment,
                wordcloud_image,
            )


gio = GradioInference()
title = "YouTube Insights"
description = "Your AI-powered video analytics tool"

block = gr.Blocks()

with block as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <div>
            <h1>YouTube <span style="color: #FFA500;">Insights</span> πŸ’‘</h1>
          </div>
          <h4 style="margin-bottom: 10px; font-size: 95%">
            Your AI-powered video analytics tool ✨
          </h4>
        </div>
        """
    )
    with gr.Group():
        with gr.Tab("From YouTube πŸ“Ή"):
            with gr.Box():
                
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(
                        label="Speech-to-text Model Size", choices=gio.sizes, value="base"
                    )
                    lang = gr.Dropdown(
                        label="Language (Optional)", choices=gio.langs, value="none"
                    )
                link = gr.Textbox(
                    label="YouTube Link", placeholder="Enter YouTube link..."
                )
                title = gr.Label(label="Video Title")
                
                with gr.Row().style(equal_height=True):
                    img = gr.Image(label="Thumbnail")
                    text = gr.Textbox(
                        label="Transcription",
                        placeholder="Transcription Output...",
                        lines=10,
                    ).style(show_copy_button=True, container=True)
                    
                with gr.Row().style(equal_height=True):
                    summary = gr.Textbox(
                        label="Summary", placeholder="Summary Output...", lines=5
                    ).style(show_copy_button=True, container=True)
                    keywords = gr.Textbox(
                        label="Keywords", placeholder="Keywords Output...", lines=5
                    ).style(show_copy_button=True, container=True)
                    label = gr.Label(label="Sentiment Analysis")
                    wordcloud_image = gr.Image(label="WordCloud")
                    
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton(
                        [link, title, img, text, summary, keywords, label, wordcloud_image], scale=1, value="Clear πŸ—‘οΈ"
                    )
                    btn = gr.Button("Get video insights πŸ”Ž", variant="primary", scale=1)
                btn.click(
                    gio,
                    inputs=[link, lang, size],
                    outputs=[text, summary, keywords, label, wordcloud_image],
                )
                link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])

        with gr.Tab("From Audio file πŸŽ™οΈ"):
            with gr.Box():
                
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(
                        label="Model Size", choices=gio.sizes, value="base"
                    )
                    lang = gr.Dropdown(
                        label="Language (Optional)", choices=gio.langs, value="none"
                    )
                audio_file = gr.Audio(type="filepath")
                
                with gr.Row().style(equal_height=True):
                    text = gr.Textbox(
                        label="Transcription",
                        placeholder="Transcription Output...",
                        lines=10,
                    ).style(show_copy_button=True, container=False)
                    
                with gr.Row().style(equal_height=True):
                    summary = gr.Textbox(
                        label="Summary", placeholder="Summary Output", lines=5
                    )
                    keywords = gr.Textbox(
                        label="Keywords", placeholder="Keywords Output", lines=5
                    )
                    label = gr.Label(label="Sentiment Analysis")
                    wordcloud_image = gr.Image(label="WordCloud")
                    
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton([audio_file,text, summary, keywords, label, wordcloud_image], scale=1, value="Clear πŸ—‘οΈ")
                    btn = gr.Button(
                        "Get audio insights πŸ”Ž", variant="primary", scale=1
                    )
                btn.click(
                    gio.from_audio_input,
                    inputs=[lang, size, audio_file],
                    outputs=[text, summary, keywords, label, wordcloud_image],
                )


with block:
    gr.Markdown("### Video Examples")
    gr.Examples(["https://www.youtube.com/shorts/xDNzz8yAH7I","https://www.youtube.com/watch?v=kib6uXQsxBA&pp=ygURc3RldmUgam9icyBzcGVlY2g%3D"], inputs=link)

    gr.Markdown("### Audio Examples")
    gr.Examples(
        [[os.path.join(os.path.dirname(__file__),"audios/TED_lagrange_point.wav")],[os.path.join(os.path.dirname(__file__),"audios/TED_platon.wav")]], 
        inputs=audio_file)
    
    gr.Markdown("### About the app:")

    with gr.Accordion("What is YouTube Insights?", open=False):
        gr.Markdown(
            "YouTube Insights is a tool developed for academic purposes that allows you to analyze YouTube videos or audio files. It provides features like transcription, summarization, keyword extraction, sentiment analysis, and word cloud generation for multimedia content."
        )

    with gr.Accordion("How does YouTube Insights work?", open=False):
        gr.Markdown(
            "YouTube Insights leverages several powerful AI models and libraries. It uses OpenAI's Whisper for Automatic Speech Recognition (ASR) to transcribe audio content. It summarizes the transcribed text using Facebook's BART model, extracts keywords with VoiceLabT5, performs sentiment analysis with DistilBERT, and generates word clouds."
        )

    with gr.Accordion("What languages are supported for the analysis?", open=False):
        gr.Markdown(
            "YouTube Insights supports multiple languages for transcription and analysis. You can select your preferred language from the available options when using the app."
        )

    with gr.Accordion("Can I analyze audio files instead of YouTube videos?", open=False):
        gr.Markdown(
            "Yes, you can analyze audio files directly. Simply upload your audio file to the app, and it will provide the same transcription, summarization, keyword extraction, sentiment analysis, and word cloud generation features."
        )

    with gr.Accordion("What are the different model sizes available for transcription?", open=False):
        gr.Markdown(
            "The app uses a Speech-to-text model that has different training sizes, from tiny to large. Hence, the bigger the model the accurate the transcription."
        )

    with gr.Accordion("How long does it take to analyze a video or audio file?", open=False):
        gr.Markdown(
            "The time taken for analysis may vary based on the duration of the video or audio file and the selected model size. Shorter content will be processed more quickly."
        )
    
    with gr.Accordion("Who developed YouTube Insights?" ,open=False):
        gr.Markdown(
            "YouTube Insights was developed by students as part of the 2022/23 Master's in Big Data & Data Science program at Universidad Complutense de Madrid for academic purposes (Trabajo de Fin de Master)."
        )
    
    gr.HTML(
        """
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <p style="margin-bottom: 10px; font-size: 96%">
            Trabajo de Fin de MΓ‘ster - Grupo 3
          </p>
          <p style="margin-bottom: 10px; font-size: 90%">
            2023 Master in Big Data & Data Science - Universidad Complutense de Madrid
          </p>
        </div>
        """
    )

demo.launch()