Spaces:
Running
Running
File size: 12,787 Bytes
a7fd2fe 39440ed 47fbf7b e2cb6ae d7ac35b e2cb6ae 804d8f9 e2cb6ae 0921718 e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 3e41dea e2cb6ae 804d8f9 0aa2056 b470a83 804d8f9 a6370b3 804d8f9 e2cb6ae c49aa0f d7ac35b e2cb6ae c49aa0f e2cb6ae 47fbf7b e2cb6ae c49aa0f e2cb6ae c49aa0f e2cb6ae 4de408f e2cb6ae 4de408f e2cb6ae b54ea30 cc724c9 b54ea30 64ab91a b54ea30 e2cb6ae db843a0 c49aa0f bae9232 923595a e2cb6ae bae9232 e2cb6ae a7fd2fe 1898dec 804d8f9 b54ea30 39440ed be97a09 e2cb6ae 4de408f 8b45a7a 4de408f 39440ed b54ea30 39440ed af7be88 18b17ea b54ea30 0ffc81e b54ea30 e2cb6ae 39440ed e2cb6ae cc724c9 8b45a7a 804d8f9 d7ac35b 1898dec e2cb6ae a6370b3 8b45a7a 804d8f9 1898dec 0aa2056 1898dec d7ac35b 0aa2056 1898dec a6370b3 1898dec 0aa2056 e40f126 0aa2056 1898dec 0aa2056 1898dec cc724c9 51520f0 0aa2056 8b45a7a 0aa2056 b54ea30 60d1a78 b54ea30 cc724c9 b54ea30 8b45a7a 5c50e05 e40f126 0aa2056 be97a09 b54ea30 51520f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import streamlit as st
import pandas as pd
import time
from datetime import datetime
import numpy as np
import pmdarima as pm
import matplotlib.pyplot as plt
from pmdarima import auto_arima
# import plotly.graph_objects as go
import torch
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
st.set_page_config(
page_title="Sales Forecasting System",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# Preprocessing
@st.cache_data
def merge(B, C, A):
i = j = k = 0
# Convert 'Date' columns to datetime.date objects
B['Date'] = pd.to_datetime(B['Date']).dt.date
C['Date'] = pd.to_datetime(C['Date']).dt.date
A['Date'] = pd.to_datetime(A['Date']).dt.date
while i < len(B) and j < len(C):
if B['Date'].iloc[i] <= C['Date'].iloc[j]:
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
else:
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
while i < len(B):
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
k += 1
while j < len(C):
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
return A
@st.cache_data
def merge_sort(dataframe):
if len(dataframe) > 1:
center = len(dataframe) // 2
left = dataframe.iloc[:center]
right = dataframe.iloc[center:]
merge_sort(left)
merge_sort(right)
return merge(left, right, dataframe)
else:
return dataframe
@st.cache_data
def drop (dataframe):
def get_columns_containing(dataframe, substrings):
return [col for col in dataframe.columns if any(substring.lower() in col.lower() for substring in substrings)]
columns_to_keep = get_columns_containing(dataframe, ["date", "sale"])
dataframe = dataframe.drop(columns=dataframe.columns.difference(columns_to_keep))
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def date_format(dataframe):
for i, d, s in dataframe.itertuples():
dataframe['Date'][i] = dataframe['Date'][i].strip()
for i, d, s in dataframe.itertuples():
new_date = datetime.strptime(dataframe['Date'][i], "%m/%d/%Y").date()
dataframe['Date'][i] = new_date
return dataframe
@st.cache_data
def group_to_three(dataframe):
dataframe['Date'] = pd.to_datetime(dataframe['Date'])
dataframe = dataframe.groupby([pd.Grouper(key='Date', freq='3D')])['Sales'].mean().round(2)
dataframe = dataframe.replace(0, np.nan).dropna()
return dataframe
@st.cache_data
def series_to_df_exogenous(series):
dataframe = series.to_frame()
dataframe = dataframe.reset_index()
dataframe = dataframe.set_index('Date')
dataframe = dataframe.dropna()
# Create the eXogenous values
dataframe['Sales First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(1)
dataframe['Seasonal First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(12)
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def dates_df(dataframe):
dataframe = dataframe.reset_index()
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
dataframe[dataframe.columns] = dataframe[dataframe.columns].astype(str)
return dataframe
@st.cache_data
def get_forecast_period(period):
return round(period / 3)
# SARIMAX Model
@st.cache_data
def train_test(dataframe):
n = round(len(dataframe) * 0.2)
training_y = dataframe.iloc[:-n,0]
test_y = dataframe.iloc[-n:,0]
test_y_series = pd.Series(test_y, index=dataframe.iloc[-n:, 0].index)
training_X = dataframe.iloc[:-n,1:]
test_X = dataframe.iloc[-n:,1:]
future_X = dataframe.iloc[0:,1:]
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
@st.cache_data
def test_fitting(dataframe, Exo, trainY):
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
test='adf',min_p=1,min_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=None, D=1, trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
model = trainTestModel
return model
@st.cache_data
def forecast_accuracy(forecast, actual):
mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
corr = np.corrcoef(forecast, actual)[0,1] # corr
mins = np.amin(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
maxs = np.amax(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
minmax = 1 - np.mean(mins/maxs) # minmax
return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
@st.cache_data
def sales_growth(dataframe, fittedValues):
sales_growth = fittedValues.to_frame()
sales_growth = sales_growth.reset_index()
sales_growth.columns = ("Date", "Sales")
sales_growth = sales_growth.set_index('Date')
sales_growth['Sales'] = (sales_growth['Sales']).round(2)
# Calculate and create the column for sales difference and growth
sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
# Calculate and create the first row for sales difference and growth
sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
return sales_growth
@st.cache_data
def merge_forecast_data(historical, test, future):
historical = historical.to_frame()
historical.rename(columns={historical.columns[0]: "Actual Sales"}, inplace=True)
test = test.to_frame()
test.rename(columns={test.columns[0]: "Predicted Sales"}, inplace=True)
future = future.to_frame()
future.rename(columns={future.columns[0]: "Future Forecasted Sales"}, inplace=True)
merged_dataframe = pd.merge_ordered(historical, pd.merge_ordered(test, future))
return merged_dataframe
# TAPAS Model
@st.cache_resource
def load_tapas_model():
model_name = "google/tapas-large-finetuned-wtq"
tokenizer = TapasTokenizer.from_pretrained(model_name)
model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
return pipe
pipe = load_tapas_model()
def get_answer(table, query):
answers = pipe(table=table, query=query)
return answers
def convert_answer(answer):
if answer['aggregator'] == 'SUM':
cells = answer['cells']
converted = sum(float(value.replace(',', '')) for value in cells)
return converted
if answer['aggregator'] == 'AVERAGE':
cells = answer['cells']
values = [float(value.replace(',', '')) for value in cells]
converted = sum(values) / len(values)
return converted
if answer['aggregator'] == 'COUNT':
cells = answer['cells']
converted = sum(int(value.replace(',', '')) for value in cells)
return converted
else:
return answer
def get_converted_answer(table, query):
converted_answer = convert_answer(get_answer(table, query))
return converted_answer
# Web Application
st.title("Forecasting Dashboard π")
st.subheader("Welcome User, start forecasting by uploading your file in the sidebar!")
# Session States
if 'uploaded' not in st.session_state:
st.session_state.uploaded = False
if 'forecasted' not in st.session_state:
st.session_state.forecasted = False
# Sidebar Menu
with st.sidebar:
# TODO Name for product
st.title("MaLaCast v1.0")
st.subheader("An intelligent sales forecasting system")
uploaded_file = st.file_uploader("Upload your store data here to proceed (must atleast contain Date and Sales)", type=["csv"])
if uploaded_file is not None:
date_found = False
sales_found = False
df = pd.read_csv(uploaded_file, parse_dates=True)
for column in df.columns:
if 'Date' in column:
date_found = True
if 'Sales' in column:
sales_found = True
if(date_found == False or sales_found == False):
st.error('Please upload a csv containing both Date and Sales...')
st.stop()
st.success("File uploaded successfully!")
st.write("Your uploaded data:")
st.write(df)
df = drop(df)
df = date_format(df)
merge_sort(df)
series = group_to_three(df)
st.session_state.uploaded = True
with open('sample.csv', 'rb') as f:
st.download_button("Download our sample CSV", f, file_name='sample.csv')
if (st.session_state.uploaded):
st.subheader("Sales History")
st.line_chart(series)
MIN_DAYS = 30
MAX_DAYS = 90
period = st.slider('How many days would you like to forecast?', min_value=MIN_DAYS, max_value=MAX_DAYS)
forecast_period = get_forecast_period(period)
forecast_button = st.button(
'Start Forecasting',
key='forecast_button',
type="primary",
)
if (forecast_button or st.session_state.forecasted):
df = series_to_df_exogenous(series)
train = train_test(df)
training_y, test_y, test_y_series, training_X, test_X, future_X = train
train_test_model = test_fitting(df, training_X, training_y)
n_periods = round(len(df) * 0.2)
future_n_periods = forecast_period + n_periods
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
index_of_fc = test_y_series.index
# make series for plotting purpose
fitted_series = pd.Series(fitted)
fitted_series.index = index_of_fc
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
#Future predictions
frequency = '3D'
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = future_n_periods, freq=frequency)
# make series for future plotting purpose
future_fitted_series = pd.Series(future_fitted)
future_fitted_series.index = future_index_of_fc
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
# Plot
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
# plt.plot(test_y, color='b')
# plt.plot(fitted_series, color='r', label = 'Predicted Sales')
# plt.title("SARIMAX - Forecast of Auto Business Retail Sales VS Actual Sales")
# plt.legend(loc='upper left', fontsize=8)
# plt.plot(future_fitted_series, color='darkgreen', label ='Future Forecasted Sales')
# plt.fill_between(future_lower_series.index,
# future_lower_series,
# future_upper_series,
# color='k', alpha=.15)
# plt.fill_between(lower_series.index,
# lower_series,
# upper_series,
# color='k', alpha=.15)
future_sales_growth = sales_growth(df, future_fitted_series)
future_sales_growth = future_sales_growth.iloc[n_periods:]
df = dates_df(future_sales_growth)
col = st.columns(2)
with col[0]:
col[0].header("Sales Forecast")
merged_data = merge_forecast_data(df['Sales'], fitted_series, future_fitted_series)
col[0].line_chart(merged_data)
with col[1]:
col[1].subheader(f"Forecasted sales in the next {period} days")
col[1].write(df)
st.session_state.forecasted = True
with st.form("question_form"):
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
query_button = st.form_submit_button(label='Generate Answer')
if query_button or question:
answer = get_converted_answer(df, question)
if answer is not None:
st.subheader("The answer is:", answer)
else:
st.subheader("Answer is not found in table")
# Hide Streamlit default style
hide_st_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True) |