File size: 22,393 Bytes
406922d
 
 
 
 
 
4235b93
406922d
 
a6e19bf
2b82929
853de85
c255e80
4700246
c438308
c255e80
55b65ff
5ceca97
c255e80
406922d
b4e17e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406922d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439595
406922d
 
922691a
406922d
 
 
 
922691a
406922d
 
 
922691a
406922d
 
 
 
 
 
 
 
853de85
7babadc
 
4a1799c
f37431f
8bbeec9
41d787a
56c4152
 
41d787a
 
b1fdec7
41d787a
 
 
 
b1fdec7
56c4152
e75cf6f
2d5b27a
 
 
 
064f508
5ceca97
 
 
2d5b27a
 
 
 
5ceca97
2d5b27a
5ceca97
 
5d7b5ca
 
 
 
 
2d5b27a
5ceca97
2d5b27a
 
 
1cbb9a3
5ceca97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa834c
 
08d39af
8fa834c
 
 
 
9752325
 
8fa834c
 
 
 
 
 
08d39af
8fa834c
 
 
 
 
9752325
 
8fa834c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9752325
 
8fa834c
 
e2ccc57
3a39c6a
98dff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9187600
98dff0d
 
 
9187600
d0c8296
9187600
 
 
 
 
2ccbc94
 
 
61c1ceb
aa82089
 
 
 
4520107
 
f8f5931
4ef836e
0972466
08673dd
 
ecd0d87
f5ecf5c
f8f5931
4520107
e8aca9f
f5ecf5c
ef32750
d55bdc4
0972466
4520107
25af150
 
 
 
 
 
ef32750
e8aca9f
0972466
3057649
61c1ceb
4ef836e
25af150
61c1ceb
dfb8cdd
 
4ef836e
25af150
 
4ef836e
d55bdc4
d0c8296
4ef836e
98dff0d
dfb8cdd
 
9d3cacd
dfb8cdd
 
 
 
 
 
 
3e45e7c
4520107
dfb8cdd
25af150
98dff0d
d55bdc4
 
98dff0d
56c4152
08673dd
f5423c4
d0c8296
98dff0d
ecd0d87
771df70
 
 
c438308
b833bfe
771df70
ecd0d87
 
 
 
 
 
 
 
861f78a
ecd0d87
345a03a
861f78a
ecd0d87
c438308
771df70
41d787a
ecd0d87
 
488ebbb
ecd0d87
c40d130
a5dfa51
 
c40d130
488ebbb
a5dfa51
488ebbb
 
ecd0d87
 
 
 
 
c438308
8fa834c
c258d98
861f78a
4278b4b
861f78a
b833bfe
 
861f78a
 
8fa834c
ecd0d87
ceeda4e
18b19dd
 
30157d2
 
e9cbeff
 
01ae78a
50b9850
64f9070
b833bfe
a9b63e8
 
 
 
 
cdaf020
771df70
cdaf020
b833bfe
771df70
ef667a6
b833bfe
6924371
b833bfe
 
 
771df70
a9b63e8
8fa834c
a9b63e8
b833bfe
a9b63e8
89ef005
0526b58
 
 
 
 
78f3d66
aca9549
ecd0d87
8fa834c
41d787a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback


model_yolo = YOLO('yolov8l.pt')  


dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", 
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", 
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", 
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", 
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", 
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", 
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", 
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", 
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", 
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", 
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", 
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", 
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", 
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", 
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", 
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", 
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", 
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", 
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", 
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", 
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", 
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", 
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", 
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", 
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", 
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link():
    return "https://www.akc.org/dog-breeds/"


async def predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
        topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
    return top1_prob, topk_breeds, topk_probs_percent
    

async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
    results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
    dogs = []
    boxes = []
    for box in results.boxes:
        if box.cls == 16:  # COCO dataset class for dog is 16 
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            boxes.append((xyxy, confidence))
    
    if not boxes:
        dogs.append((image, 1.0, [0, 0, image.width, image.height]))
    else:
        nms_boxes = non_max_suppression(boxes, iou_threshold)
        
        for box, confidence in nms_boxes:
            x1, y1, x2, y2 = box
            w, h = x2 - x1, y2 - y1
            x1 = max(0, x1 - w * 0.05)
            y1 = max(0, y1 - h * 0.05)
            x2 = min(image.width, x2 + w * 0.05)
            y2 = min(image.height, y2 + h * 0.05)
            cropped_image = image.crop((x1, y1, x2, y2))
            dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
    
    return dogs


def non_max_suppression(boxes, iou_threshold):
    keep = []
    boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
    while boxes:
        current = boxes.pop(0)
        keep.append(current)
        boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
    return keep

def calculate_iou(box1, box2):
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    
    iou = intersection / float(area1 + area2 - intersection)
    return iou



async def process_single_dog(image):
    top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
    if top1_prob < 0.15:
        initial_state = {
            "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
            "buttons": [],
            "show_back": False,
            "image": None,
            "is_multi_dog": False
        }
        return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state

    breed = topk_breeds[0]
    description = get_dog_description(breed)

    if top1_prob >= 0.45:
        formatted_description = format_description(description, breed)
        initial_state = {
            "explanation": formatted_description,
            "buttons": [],
            "show_back": False,
            "image": image,
            "is_multi_dog": False
        }
        return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
    else:
        explanation = (
            f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
            f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
            f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
            f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
            "Click on a button to view more information about the breed."
        )
        buttons = [
            gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
            gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
            gr.update(visible=True, value=f"More about {topk_breeds[2]}")
        ]
        initial_state = {
            "explanation": explanation,
            "buttons": buttons,
            "show_back": True,
            "image": image,
            "is_multi_dog": False
        }
        return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state


# async def predict(image):
#     if image is None:
#         return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None

#     try:
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)

#         dogs = await detect_multiple_dogs(image)
        
#         color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
#         buttons = []
#         annotated_image = image.copy()
#         draw = ImageDraw.Draw(annotated_image)
#         font = ImageFont.load_default()

#         dogs_info = ""

#         for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
#             buttons_html = ""  
#             top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
#             color = color_list[i % len(color_list)]
#             draw.rectangle(box, outline=color, width=3)
#             draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
        
#             combined_confidence = detection_confidence * top1_prob
#             dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
#             dogs_info += f'<h2>Dog {i+1}</h2>'
        
#             if top1_prob >= 0.45:
#                 breed = topk_breeds[0]
#                 description = get_dog_description(breed)
#                 dogs_info += format_description_html(description, breed)
        
#             elif combined_confidence >= 0.15:
#                 dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
#                 for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
#                     prob = float(prob.replace('%', ''))
#                     dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
#                 dogs_info += "</ul>"
        
#                 for breed in topk_breeds[:3]:
#                     button_id = f"Dog {i+1}: More about {breed}"
#                     buttons_html += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
#                     buttons.append(button_id)
        
#             else:
#                 dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
        
#             dogs_info += '</div>'    

         
#         buttons_html = ""  
      
#         html_output = f"""
#         <style>
#         .dog-info {{ border: 1px solid #ddd; margin-bottom: 20px; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }}
#         .dog-info h2 {{ background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0; }}
#         .breed-buttons {{ margin-top: 10px; }}
#         .breed-button {{ margin-right: 10px; margin-bottom: 10px; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 3px; cursor: pointer; }}
#         </style>
#         {dogs_info}
#         """
        

#         if buttons:
#             html_output += """
#             <script>
#             function handle_button_click(button_id) {
#                 const radio = document.querySelector('input[type=radio][value="' + button_id + '"]');
#                 if (radio) {
#                     radio.click();
#                 } else {
#                     console.error("Radio button not found:", button_id);
#                 }
#             }
#             </script>
#             """
#             initial_state = {
#                 "dogs_info": dogs_info,
#                 "buttons": buttons,
#                 "show_back": True,
#                 "image": annotated_image,
#                 "is_multi_dog": len(dogs) > 1,
#                 "html_output": html_output  
#             }
#             return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state
#         else:
#             initial_state = {
#                 "dogs_info": dogs_info,
#                 "buttons": [],
#                 "show_back": False,
#                 "image": annotated_image,
#                 "is_multi_dog": len(dogs) > 1,
#                 "html_output": html_output  
#             }
#             return html_output, annotated_image, gr.update(visible=False, choices=[]), initial_state


#     except Exception as e:
#         error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
#         print(error_msg)
#         return error_msg, None, gr.update(visible=False, choices=[]), None



async def predict(image):
    # 定義初始值,避免未賦值錯誤
    html_output = ""
    
    if image is None:
        return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        dogs = await detect_multiple_dogs(image)
        
        color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
        buttons = []
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)
        font = ImageFont.load_default()

        dogs_info = ""

        for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
            buttons_html = ""  # 每次迴圈重置按鈕 HTML
            top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
            color = color_list[i % len(color_list)]
            draw.rectangle(box, outline=color, width=3)
            draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
        
            combined_confidence = detection_confidence * top1_prob
            dogs_info += f'<div class="dog-info" style="border-left: 5px solid {color}; margin-bottom: 20px; padding: 15px;">'
            dogs_info += f'<h2>Dog {i+1}</h2>'
        
            if top1_prob >= 0.45:
                breed = topk_breeds[0]
                description = get_dog_description(breed)
                dogs_info += format_description_html(description, breed)
        
                # 在 0.45 以上情況下直接插入按鈕
                button_id = f"Dog {i+1}: More about {breed}"
                buttons_html += f'<button style="display:inline-block; margin-right:10px;" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
                dogs_info += f'<div class="breed-buttons">{buttons_html}</div>' 
        
            elif combined_confidence >= 0.15:
                dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
                for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
                    prob = float(prob.replace('%', ''))
                    dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
        
                    # 為每個品種插入按鈕
                    button_id = f"Dog {i+1}: More about {breed}"
                    buttons_html += f'<button style="display:inline-block; margin-right:10px;" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
                
                dogs_info += "</ul>"
                # 插入按鈕
                dogs_info += f'<div class="breed-buttons">{buttons_html}</div>'
        
            else:
                dogs_info += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
        
            dogs_info += '</div>'  # 結束當前狗的資訊區塊
        
        # 最後生成完整的 HTML 輸出
        html_output = f"""
            <style>
            .dog-info {{ border: 1px solid #ddd; margin-bottom: 20px; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }}
            .dog-info h2 {{ background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0; }}
            .breed-buttons {{ margin-top: 10px; }}
            .breed-button {{ margin-right: 10px; margin-bottom: 10px; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 3px; cursor: pointer; }}
            </style>
            {dogs_info}
        """



        return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        print(error_msg)
        return error_msg, None, gr.update(visible=False, choices=[]), None



def show_details_html(choice, previous_output, initial_state):
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        formatted_description = format_description_html(description, breed)
        
        html_output = f"""
        <div class="dog-info">
            <h2>{breed}</h2>
            {formatted_description}
        </div>
        """
        
        initial_state["current_description"] = html_output
        initial_state["original_buttons"] = initial_state.get("buttons", [])
        
        return html_output, gr.update(visible=True), initial_state
    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)
        return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state


def format_description_html(description, breed):
    html = "<ul style='list-style-type: none; padding-left: 0;'>"
    if isinstance(description, dict):
        for key, value in description.items():
            html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
    elif isinstance(description, str):
        html += f"<li>{description}</li>"
    else:
        html += f"<li>No description available for {breed}</li>"
    html += "</ul>"
    akc_link = get_akc_breeds_link()
    html += f'<p><a href="{akc_link}" target="_blank">Learn more about {breed} on the AKC website</a></p>'
    return html


def go_back(state):
    buttons = state.get("buttons", [])
    return (
        state["html_output"],
        state["image"],
        gr.update(visible=True, choices=buttons),
        gr.update(visible=False),
        state
    )


with gr.Blocks() as iface:
    gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
    gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
    with gr.Row():
        input_image = gr.Image(label="Upload a dog image", type="pil")
        output_image = gr.Image(label="Annotated Image")
    
    output = gr.HTML(label="Prediction Results")  
    
    breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
    
    back_button = gr.Button("Back", visible=False)
    
    initial_state = gr.State()
    
    input_image.change(
        predict,
        inputs=input_image,
        outputs=[output, output_image, breed_buttons, initial_state]
    )

    breed_buttons.change(
        show_details_html,
        inputs=[breed_buttons, output, initial_state],
        outputs=[output, back_button, initial_state]
    )

    back_button.click(
        go_back,
        inputs=[initial_state],
        outputs=[output, output_image, breed_buttons, back_button, initial_state]
    )
    
    gr.Examples(
        examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
        inputs=input_image
    )

    gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')


if __name__ == "__main__":
    iface.launch()